• 1
    Wouters KA,Kremer LCM,Miller TL,Herman EH,Lipshultz SE. Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies. Br J Haematol. 2005; 131: 561578.
  • 2
    Green DM,Grigoriev YA,Nan B, et al. Congestive heart failure after treatment for Wilms' tumor: a report from the National Wilms' Tumor Study Group. J Clin Oncol. 2001; 19: 19261934.
  • 3
    Lipshultz SE,Lipsitz SR,Sallan SE, et al. Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol. 2005; 23: 26292636.
  • 4
    Minotti G,Recalcati S,Menna P,Salvatorelli E,Corna G,Cairo G. Doxorubicin cardiotxicity and the control of iron metabolism: quinone-dependent and independent mechanisms. Methods Enzymol. 2004; 378: 340361.
  • 5
    Begleiter A,Leith MK. Induction of DT-diaphorase by doxorubicin and combination therapy with mitomycin C in vitro. Biochem Pharmacol. 1995; 50: 12811286.
  • 6
    Badary OA,Awad AS,Abdel-Maksoud S,Hamada FM. Cardiac DT-diaphorase contributes to the detoxification system against doxorubicin-induced positive inotropic effects in guinea-pig isolated atria. Clin Exp Pharmacol Physiol. 2004; 31: 856861.
  • 7
    Lakhman SS,Ghosh D,Blanco JG. Functional significance of a natural allelic variant of human carbonyl reductase 3 (CBR3). Drug Metab Dispos. 2005; 33: 254257.
  • 8
    Robison LL,Mertens AC,Boice JD, et al. Study design and cohort characteristics of the Childhood Cancer Survivor Study: a multi-institutional collaborative project. Med Pediatr Oncol. 2002; 38: 229239.
  • 9
    Covarrubias VG,Lakhman SS,Forrest A,Relling MV,Blanco JG. Higher activity of polymorphic NAD(P)H:quinone oxidoreductase in liver cytosols from blacks compared with whites. Toxicol Lett. 2006; 164: 249258.
  • 10
    DiFrancesco R,Griggs JJ,Donnelly J,DiCenzo R. Simultaneous analysis of cyclophosphamide, doxorubicin and doxorubicinol by liquid chromatography coupled to tandem mass spectrometry. J Chromatogr B. 2007; 852(1–2): 545553.
  • 11
    Blanco JG,Edick MJ,Hancock ML, et al. Genetic polymorphisms in CYP3A5, CYP3A4 and NQO1 in children who developed therapy-related myeloid malignancies Pharmacogenetics. 2002; 12: 605611.
  • 12
    Siegel D,McGuinness SM,Winski SL,Ross D. Genotype-phenotype relationships in studies of a polymorphism in NAD(P)H:quinone oxidoreductase 1. Pharmacogenetics. 1999; 9: 113121.
  • 13
    Fleming RA,Drees J,Loggie BW, et al. Clinical significance of a NAD(P)H:quinone oxidoreductase 1 polymorphism in patients with disseminated peritoneal cancer receiving intraperitoneal hyperthermic chemotherapy with mitomycin C. Pharmacogenetics. 2002; 12: 3137.
  • 14
    Wojnowski L,Kulle B,Schirmer M, et al. NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation. 2005; 112: 37543762.
  • 15
    Ohara H,Miyabe Y, Y,Matsuura K,Hara A. Reduction of drug ketones by dihydrodiol dehydrogenases, carbonyl reductase and aldehyde reductase of human liver. Biochem Pharmacol. 1995; 50: 221227.
  • 16
    Wermuth B,Platts KL,Seidel A,Oesch F. Carbonyl reductase provides the enzymatic basis of quinone detoxication in man. Biochem Pharmacol. 1986; 35: 12771282.
  • 17
    Olson LE,Bedja D,Alvey SJ,Cardounel AJ,Gabrielson KL,Reeves RH. Protection from doxorubicin-induced cardiac toxicity in mice with a null allele of carbonyl reductase 1. Cancer Res. 2003; 63: 66026606.
  • 18
    Forrest GL,Gonzalez B,Tseng W,Li X,Mann J. Human carbonyl reductase overexpression in the heart advances the development of doxorubicin-induced cardiotoxicity in transgenic mice. Cancer Res. 2000; 60: 51585164.