• 1
    Birchmeier C,Birchmeier W,Gherardi E,Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003; 4: 915925.
  • 2
    Gerritsen ME,Tomlinson JE,Zlot C,Ziman M,Hwang S. Using gene expression profiling to identify the molecular basis of the synergistic actions of hepatocyte growth factor and vascular endothelial growth factor in human endothelial cells. Br J Pharmacol. 2003; 140: 595610.
  • 3
    Lamszus K,Schmidt NO,Jin L, et al. Scatter factor promotes motility of human glioma and neuromicrovascular endothelial cells. Int J Cancer. 1998; 75: 1928.
  • 4
    Bowers DC,Fan S,Walter KA, et al. Scatter factor/hepatocyte growth factor protects against cytotoxic death in human glioblastoma via phosphatidylinositol 3-kinase- and AKT-dependent pathways. Cancer Res. 2000; 60: 42774283.
  • 5
    Walter KA,Hossain MA,Luddy C,Goel N,Reznik TE,Laterra J. Scatter factor/hepatocyte growth factor stimulation of glioblastoma cell cycle progression through G is c-Myc dependent and independent of p27 suppression, Cdk2 activation, or E2F1-dependent transcription. Mol Cell Biol. 2002; 22: 27032715.
  • 6
    Schmidt NO,Westphal M,Hagel C, et al. Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int J Cancer. 1999; 84: 1018.
  • 7
    Laterra J,Nam M,Rosen E, et al. Scatter factor/hepatocyte growth factor gene transfer enhances glioma growth and angiogenesis in vivo. Lab Invest. 1997; 76: 565577.
  • 8
    Abounader R,Ranganathan S,Kim BY,Nichols C,Laterra J. Signaling pathways in the induction of c-Met receptor expression by its ligand scatter factor/hepatocyte growth factor in human glioblastoma. J Neurochem. 2001; 76: 14971508.
  • 9
    Abounader R,Ranganathan S,Lal B, et al. Reversion of human glioblastoma malignancy by U1 small nuclear RNA/ribozyme targeting of scatter factor/hepatocyte growth factor and c-Met expression. J Natl Cancer Inst. 1999; 91: 15481556.
  • 10
    Abounader R,Lal B,Luddy C, et al. In vivo targeting of SF/HGF and c-Met expression via U1snRNA/ribozymes inhibits glioma growth and angiogenesis and promotes apoptosis. FASEB J. 2002; 16: 108110.
  • 11
    Li Y,Lal B,Kwon S, et al. The scatter factor/hepatocyte growth factor: c-Met pathway in human embryonal central nervous system tumor malignancy. Cancer Res. 2005; 65: 93559362.
  • 12
    Fan S,Ma YX,Wang JA, et al. The cytokine hepatocyte growth factor/scatter factor inhibits apoptosis and enhances DNA repair by a common mechanism involving signaling through phosphatidyl inositol 3′ kinase. Oncogene. 2000; 19: 22122223.
  • 13
    Fan S,Wang JA,Yuan RQ, et al. Scatter factor protects epithelial and carcinoma cells against apoptosis induced by DNA-damaging agents. Oncogene. 1998; 17: 131141.
  • 14
    Lal B,Xia S,Abounader R,Laterra J. Targeting the c-Met pathway potentiates glioblastoma responses to gamma-radiation. Clin Cancer Res. 2005; 11: 44794486.
  • 15
    Couldwell WT, Weiss MH,DeGiorgio CM,et al. Clinical and radiographic response in minority of patients with recurrent malignant gliomas treated with high-dose tamoxifen. Neurosurgery. 1993; 32: 485489; discussion 489–490.
  • 16
    Lim DA,Cha S,Mayo MC, et al. Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro Oncol. 2007; 9: 424429.
  • 17
    Showalter TN,Andrel J,Andrews DW,Curran WJJr,Daskalakis C,Werner-Wasik M. Multifocal glioblastoma multiforme: prognostic factors and patterns of progression. Int J Radiat Oncol Biol Phys. 2007; 69: 820824.
  • 18
    Parsa AT,Wachhorst S,Lamborn KR, et al. Prognostic significance of intracranial dissemination of glioblastoma multiforme in adults. J Neurosurg. 2005; 102: 622628.
  • 19
    Krex D,Mohr B,Appelt H,Schackert HK,Schackert G. Genetic analysis of a multifocal glioblastoma multiforme: a suitable tool to gain new aspects in glioma development. Neurosurgery. 2003; 53: 13771384; discussion 1384.
  • 20
    Furge KA,Kiewlich D,Le P, et al. Suppression of Ras-mediated tumorigenicity and metastasis through inhibition of the Met receptor tyrosine kinase. Proc Natl Acad Sci U S A. 2001; 98: 1072210727.
  • 21
    Amicone L,Terradillos O,Calvo L, et al. Synergy between truncated c-Met (cyto-Met) and c-Myc in liver oncogenesis: importance of TGF-beta signalling in the control of liver homeostasis and transformation. Oncogene. 2002; 21: 13351345.
  • 22
    Ivan M,Bond JA,Prat M,Comoglio PM,Wynford-Thomas D. Activated ras and ret oncogenes induce over-expression of c-Met (hepatocyte growth factor receptor) in human thyroid epithelial cells. Oncogene. 1997; 14: 24172423.
  • 23
    Clifford SC,Czapla K,Richards FM,O'Donoghue DJ,Maher ER. Hepatocyte growth factor-stimulated renal tubular mitogenesis: effects on expression of c-myc, c-fos, c-Met, VEGF and the VHL tumour-suppressor and related genes. Br J Cancer. 1998; 77: 14201428.
  • 24
    Desiderio MA,Pogliaghi G,Dansi P. Hepatocyte growth factor-induced expression of ornithine decarboxylase, c-Met, and c-myc is differently affected by protein kinase inhibitors in human hepatoma cells HepG2. Exp Cell Res. 1998; 242: 401409.
  • 25
    Abounader R,Laterra J. Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis. Neuro Oncol. 2005; 7: 436451.
  • 26
    Bardelli A,Pugliese L,Comoglio PM. “Invasive-growth” signaling by the Met/HGF receptor: the hereditary renal carcinoma connection. Biochim Biophys Acta. 1997; 1333: M41M51.
  • 27
    Chintala SK,Ali-Osman F,Mohanam S, et al. Effect of cisplatin and BCNU on MMP-2 levels in human glioblastoma cell lines in vitro. Clin Exp Metastasis. 1997; 15: 361367.
  • 28
    Chintala SK,Sawaya R,Gokaslan ZL,Rao JS. Modulation of matrix metalloprotease-2 and invasion in human glioma cells by alpha 3 beta 1 integrin. Cancer Lett. 1996; 103: 201208.
  • 29
    Choe G,Park JK,Jouben-Steele L, et al. Active matrix metalloproteinase 9 expression is associated with primary glioblastoma subtype. Clin Cancer Res. 2002; 8: 28942901.
  • 30
    Deryugina EI,Luo GX,Reisfeld RA,Bourdon MA,Strongin A. Tumor cell invasion through matrigel is regulated by activated matrix metalloproteinase-2. Anticancer Res. 1997; 17: 32013210.
  • 31
    Deryugina EI,Ratnikov B,Monosov E, et al. MT1-MMP initiates activation of pro-MMP-2 and integrin alphavbeta3 promotes maturation of MMP-2 in breast carcinoma cells. Exp Cell Res. 2001; 263: 209223.
  • 32
    Forsyth PA,Wong H,Laing TD, et al. Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Cancer. 1999; 79: 18281835.
  • 33
    Kachra Z,Beaulieu E,Delbecchi L, et al. Expression of matrix metalloproteinases and their inhibitors in human brain tumors. Clin Exp Metastasis. 1999; 17: 555566.
  • 34
    Kondraganti S,Mohanam S,Chintala SK, et al. Selective suppression of matrix metalloproteinase-9 in human glioblastoma cells by antisense gene transfer impairs glioblastoma cell invasion. Cancer Res. 2000; 60: 68516855.
  • 35
    Nakada M,Nakamura H,Ikeda E, et al. Expression and tissue localization of membrane-type 1, 2, and 3 matrix metalloproteinases in human astrocytic tumors. Am J Pathol. 1999; 154: 417428.