SEARCH

SEARCH BY CITATION

References

  • 1
    Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999; 286: 531-537.
  • 2
    Kloppel G, Perren A, Heitz PU. The gastroenteropancreatic neuroendocrine cell system and its tumors: the WHO classification. Ann N Y Acad Sci. 2004; 1014: 13-27.
  • 3
    Stephenson J. Human genome studies expected to revolutionize cancer classification. JAMA. 1999; 282: 927-928.
  • 4
    Halvarsson B, Muller W, Planck M, et al. Phenotypic heterogeneity in hereditary non-polyposis colorectal cancer: identical germline mutations associated with variable tumour morphology and immunohistochemical expression. J Clin Pathol. 2007; 60: 781-786.
  • 5
    Glotsos D, Tohka J, Ravazoula P, Cavouras D, Nikiforidis G. Automated diagnosis of brain tumours astrocytomas using probabilistic neural network clustering and support vector machines. Int J Neural Syst. 2005; 15: 1-11.
  • 6
    Mattfeldt T, Gottfried HW, Wolter H, Schmidt V, Kestler HA, Mayer J. Classification of prostatic carcinoma with artificial neural networks using comparative genomic hybridization and quantitative stereological data. Pathol Res Pract. 2003; 199: 773-784.
  • 7
    Zhang H, Yu CY. Tree-based analysis of microarray data for classifying breast cancer. Front Biosci. 2002; 7: c63-7.
  • 8
    Zhang H, Yu CY, Singer B, Xiong M. Recursive partitioning for tumor classification with gene expression microarray data. Proc Natl Acad Sci USA. 2001; 98: 6730-6735.
  • 9
    Cho JH, Lee D, Park JH, Lee IB. New gene selection method for classification of cancer subtypes considering within-class variation. FEBS Lett. 2003; 551: 3-7.
  • 10
    Giordano TJ. Transcriptome analysis of endocrine tumors: clinical perspectives. Ann Endocrinol (Paris). 2008; 69: 130-134.
  • 11
    Tu IP, Schaner M, Diehn M, et al. A method for detecting and correcting feature misidentification on expression microarrays [serial online]. BMC Genomics. 2004; 5: 64.
  • 12
    Allanach K, Mengel M, Einecke G, et al. Comparing microarray versus RT-PCR assessment of renal allograft biopsies: similar performance despite different dynamic ranges. Am J Transplant. 2008; 8: 1006-1015.
  • 13
    Kidd M, Modlin IM, Mane SM, Camp RL, Eick G, Latich I. The role of genetic markers—NAP1L1, MAGE-D2, and MTA1—in defining small-intestinal carcinoid neoplasia. Ann Surg Oncol. 2006; 13: 253-262.
  • 14
    Kidd M, Modlin IM, Mane SM, Camp RL, Shapiro MD. Q RT-PCR detection of chromogranin A: a new standard in the identification of neuroendocrine tumor disease. Ann Surg. 2006; 243: 273-280.
  • 15
    Leuverink E, Brennan BA, Crook ML, et al. Prognostic value of mitotic counts and Ki-67 immunoreactivity in adult-type granulosa cell tumour of the ovary. J Clin Pathol. 2008; 61: 914-919.
  • 16
    Akhtar M, Gallagher L, Rohan S. Survivin: role in diagnosis, prognosis, and treatment of bladder cancer. Adv Anat Pathol. 2006; 13: 122-126.
  • 17
    Vincan E, Swain RK, Brabletz T, Steinbeisser H. Frizzled7 dictates embryonic morphogenesis: implications for colorectal cancer progression. Front Biosci. 2007; 12: 4558-4567.
  • 18
    Martins CM, Fernandes BF, Antecka E, et al. Expression of the metastasis suppressor gene KISS1 in uveal melanoma. Eye. 2008; 22: 707-711.
  • 19
    Caunt M, Mak J, Liang WC, et al. Blocking neuropilin-2 function inhibits tumor cell metastasis. Cancer Cell. 2008; 13: 331-342.
  • 20
    Modlin IM, Kidd M, Pfragner R, Eick GN, Champaneria MC. The functional characterization of normal and neoplastic human enterochromaffin cells. J Clin Endocrinol Metab. 2006; 91: 2340-2348.
  • 21
    Kidd M, Eick G, Shapiro MD, Camp RL, Mane SM, Modlin IM. Microsatellite instability and gene mutations in transforming growth factor-beta type II receptor are absent in small bowel carcinoid tumors. Cancer. 2005; 103: 229-236.
  • 22
    Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes [serial online]. Genome Biol. 2002; 3:RESEARCH0034. Epub 2002 Jun 18.
  • 23
    Kidd M, Nadler B, Mane S, et al. GeneChip, geNorm, and gastrointestinal tumors: novel reference genes for real-time PCR. Physiol Genomics. 2007; 30: 363-370.
  • 24
    Partek Incorporated. Partek® Genomics Suite™, Revision 6.3. St. Louis, Mo: Partek Incorporated; 2008.
  • 25
    Gallant SI. Perceptron-based learning algorithms. Perceptron-based learning algorithms. IEEE Trans Neural Netw. 1990; 1: 179-191.
  • 26
    Peng H, Long F, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Machine Intell. 2005; 27: 1226-1238.
  • 27
    Jolliffe IT. Principle Component Analysis: New York, NY: Springer; 1986.
  • 28
    Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge, United Kingdom: Cambridge University Press; 2000.
  • 29
    Zhang H, Singer B. Recursive Partitioning in the Health Sciences (Statistics for Biology and Health). New York, NY: Springer; 1999.
  • 30
    Pirooznia M, Yang JY, Yang MQ, Deng Y. A comparative study of different machine learning methods on microarray gene expression data [serial online]. BMC Genomics. 2008; 9( suppl 1): S13.
  • 31
    Markey MK, Lo JY, Vargas-Voracek R, Tourassi GD, Floyd CE Jr. Perceptron error surface analysis: a case study in breast cancer diagnosis. Comput Biol Med. 2002; 32: 99-109.
  • 32
    Gabriel KR. The biplot graphic display of matrices with application to principal component analysis. Biometrika. 1971; 58: 453-467.
  • 33
    Modlin IM, Kidd M, Latich I, Zikusoka MN, Shapiro MD. Current status of gastrointestinal carcinoids. Gastroenterology. 2005; 128: 1717-1751.
  • 34
    Modlin IM, Kidd M, Latich I, et al. Genetic differentiation of appendiceal tumor malignancy: a guide for the perplexed. Ann Surg. 2006; 244: 52-60.
  • 35
    Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000; 182: 311-322.
  • 36
    Zhong W, Peng J, He H, et al. Ki-67 and PCNA expression in prostate cancer and benign prostatic hyperplasia. Clin Invest Med. 2008; 31: E8-E15.
  • 37
    Taheri ZM, Mehrafza M, Mohammadi F, Khoddami M, Bahadori M, Masjedi MR. The diagnostic value of Ki-67 and repp86 in distinguishing between benign and malignant mesothelial proliferations. Arch Pathol Lab Med. 2008; 132: 694-697.
  • 38
    Faggiano A, Mansueto G, Ferolla P, et al. Diagnostic and prognostic implications of the World Health Organization classification of neuroendocrine tumors. J Endocrinol Invest. 2008; 31: 216-223.
  • 39
    Hainsworth JD, Johnson DH, Greco FA. Poorly differentiated neuroendocrine carcinoma of unknown primary site. A newly recognized clinicopathologic entity. Ann Intern Med. 1988; 109: 364-371.
  • 40
    Lee JH, Welch DR. Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene, KiSS-1. Cancer Res. 1997; 57: 2384-2387.
  • 41
    Mitchell DC, Stafford LJ, Li D, Bar-Eli M, Liu M. Transcriptional regulation of KiSS-1 gene expression in metastatic melanoma by specificity protein-1 and its coactivator DRIP-130. Oncogene. 2007; 26: 1739-1747.
  • 42
    Seraj MJ, Harding MA, Gildea JJ, Welch DR, Theodorescu D. The relationship of BRMS1 and RhoGDI2 gene expression to metastatic potential in lineage related human bladder cancer cell lines. Clin Exp Metastasis. 2000; 18: 519-525.
  • 43
    Kidd M, Eick GN, Modlin IM, Pfragner R, Champaneria MC, Murren J. Further delineation of the continuous human neoplastic enterochromaffin cell line, KRJ-I, and the inhibitory effects of lanreotide and rapamycin. J Mol Endocrinol. 2007; 38: 181-192.
  • 44
    Pfragner R, Wirnsberger G, Niederle B, et al. Establishment of a continuous cell line from a human carcinoid of the small intestine (KRJ-1): characterization of the effects of 5-azacytidine on proliferation. Int J Oncol. 1996; 8: 513-520.