• 1
    Bellacosa A, Kumar CC, Di Cristofano A, Testa JR. Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res. 2005; 94: 29-86.
  • 2
    Sansal I, Sellers W. The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol. 2004; 22: 2954-2963.
  • 3
    Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nature Rev Cancer. 2003; 3: 155-168.
  • 4
    Fingar DC, Blenis J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene. 2004; 23: 3151-3171.
  • 5
    Harding MW. Immunophilins, mTOR, and pharmacodynamic strategies for a targeted cancer therapy. Clin Cancer Res. 2003; 9: 2882-2886.
  • 6
    Skotnicki JS, Leone CL, Smith AL, et al. Design, synthesis and biological evaluation of C-42 hydroxyesters of rapamycin: the identification of CCI-779. Clin Cancer Res. 2001; 7: 3749S-3750S.
  • 7
    Schmelzle T, Hall MN. TOR, a central controller of cell growth. Cell. 2000; 103: 253-262.
  • 8
    Neshat MS, Mellinghoff IK, Tran C, et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. PNAS. 2001; 98: 10314-10319.
  • 9
    Kang S, Bader AG, Vogt PK. Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. PNAS. 2005; 102: 802-807.
  • 10
    Inoki K, Guan K-L. Complexity of the TOR signaling network. Trends Cell Biol. 2006; 16: 206-212.
  • 11
    Sarbassov DD, Guertin DA, Ali SM, et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005; 307: 1098-1101.
  • 12
    Fingar DC, Richardson CJ, Tee AR, et al. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4EBP1/eukaryotic translation factor 4E. Mol Cell Biol. 2004; 24: 200-216.
  • 13
    Hudson CC, Liu M, Chiang GG, et al. Regulation of hypoxia-inducible factor 1α expression and function by the mammalian target of rapamycin. Mol Cell Biol. 2002; 22: 7004-7014.
  • 14
    Thomas GV, Tran C, Mellinghoff IK, et al. Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat Med. 2005; 12: 122-127.
  • 15
    Pantuck AJ, Zeng G, Belldegrun AS, Figlin RA. Pathobiology, prognosis, and targeted therapy for renal cell carcinoma: exploiting the hypoxia-induced pathway. Clin Cancer Res. 2003; 9: 4641-4652.
  • 16
    Baba M, Hirai S, Yamada-Okabe H, et al. Loss of von-Hippel-Lindau protein causes cell density dependent deregulation of cyclin D1 expression through hypoxia-inducible factor. Oncogene. 2003; 22: 2728-2738.
  • 17
    Zatyka M, Fernandes da Silva N, Clifford SC, et al. Identification of cyclin D1 and other novel targets for the von Hippel-Lindau tumor suppressor gene by expression array analysis and investigation of cyclin D1 genotype as a modifier in von Hippel-Lindau disease. Cancer Res. 2002; 62: 3803-3811.
  • 18
    Sarbassov DD, Ali SM, Sengupta S, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell. 2006; 22: 159-168.
  • 19
    Robb VA, Karbowniczek M, Klein-Szanto AJ, et al. Activation of the mTOR signaling pathway in renal clear cell carcinoma. J Urol. 2007; 177: 346-352.
  • 20
    Pantuck AJ, Seligson DB, Klatte T, et al. Prognostic relevance of the mTOR pathway in renal cell carcinoma. Cancer. 2007; 109: 2257-2267.
  • 21
    Cho D, Signoretti S, Regan M, et al. Low expression of surrogates for mTOR pathway activation predicts resistance to CCI-779 in patients with advanced renal cell carcinoma. Proceedings of the AACR-NCI-EORTC International Conference on Molecular Therapeutics, 2005; abstract C137.
  • 22
    Hidalgo M, Buckner JC, Erlichman C, et al. A phase I and pharmacokinetic study of temsirolimus (CCI-779) administered intravenously daily for 5 days every 2 weeks to patients with advanced cancer. Clin Cancer Res. 2006; 12: 5755-5763.
  • 23
    Raymond E, Alexandre J, Faivre S, et al. Safety and pharmacokinetics of weekly intravenous infusion of CCI-779, a novel mTOR inhibitor, in patients with cancer. J Clin Oncol. 2004; 22: 2336-2347.
  • 24
    O'Donnell A, Faivre S, Burris HA III, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol. 2008; 26: 1588-1595.
  • 25
    Mita MM, Mita AC, Chu QS, et al. Phase I trial of the novel mammalian target of rapamycin inhibitor deforolimus (AP23573; MK-8669) administered intravenously daily for 5 days every 2 weeks to patients with advanced malignancies. J Clin Oncol. 2008; 26: 361-367.
  • 26
    Atkins M. Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J Clin Oncol. 2004; 22: 909-918.
  • 27
    Rizzieri DA, Feldman E, DiPersio JF, et al. A phase 2 clinical trial of deforolimus (AP23573, MK-8669), a novel mammalian target of rapamycin inhibitor, in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res. 2008; 14: 2756-2762.
  • 28
    Motzer RJ, Mazumdar M, Bacik J, et al. Survival and prognostic stratification of 670 patients with advanced renal cell carcinoma. J Clin Oncol. 1999; 17: 2530-2540.
  • 29
    Motzer RJ, Murphy BA, Bacik J, et al. Interferon-alpha as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma. J Clin Oncol. 2002; 20: 289-296.
  • 30
    Hudes G, Carducci M, Tomczak P, et al. Temsirolimus, interferon-α, or both in advanced renal-cell carcinoma. N Engl J Med. 2007; 356: 2271-2281.
  • 31
    Mekhail TM, Abou-Jawde RM, BouMerhi G, et al. Validation and extension of the Memorial Sloan-Kettering prognostic factors model for survival in patients with previously untreated metastatic renal cell carcinoma. J Clin Oncol. 2005; 23: 832-841.
  • 32
    Motzer RJ, Hudes GR, Curti BD, et al. Phase I/II trial of temsirolimus combined with interferon alfa for advanced renal cell carcinoma. J Clin Oncol. 2007; 25: 3958-3964.
  • 33
    Jac J, Giessinger S, Khan M, et al. A phase II trial of RAD001 in patients with metastatic renal cell carcinoma [abstract]. J Clin Oncol. 2007; 25(18S) Abstract 5107.
  • 34
    Motzer RJ, Escudier B, Oudard S, et al. RAD001 versus placebo in patients with metastatic renal cell carcinoma after progression on VEGFr-TKI therapy: results of a randomized, double blind, multicenter phase III study. J Clin Oncol. 2008; 26(18S pt 2): 1009S. Abstract LBA5026.
  • 35
    Merchan, JR, Liu G, Fitch T, et al. Phase I/II trial of CCI-779 and bevacizumab in stage IV renal cell carcinoma: phase I safety and activity results [abstract]. J Clin Oncol. 2007; 25(18S). Abstract 5034.
  • 36
    Patnaik A, Ricart A, Cooper J, et al. A phase I, pharmacokinetic and pharmacodynamic study of sorafenib (S), a multitargeted kinase inhibitor in combination with temsirolimus (T), an mTOR inhibitor in patients with advanced solid malignancies [abstract]. Proc Am Soc Clin Oncol. 2007; 25S: 141s. Abstract 3512.
  • 37
    Roux PP, Shahbazian D, Vu H, et al. RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J Biol Chem. 2007; 282: 14056-14064.
  • 38
    Bermudez O, Marchetts S, Pages G, Gimond C. Post-translational regulation of the ERK phosphatase DUSP6/MKP3 by the mTOR pathway. Oncogene. 2008; 27: 3685-3691.
  • 39
    Yu K, Toral-Barza L, Shi C, et al. Response and determinants of cancer cell susceptibility to PI3K inhibitors: combined targeting of PI3K and Mek1 as an effective anticancer strategy. Cancer Biol Ther. 2008; 7: 307-315.
  • 40
    Legrier ME, Yang CP, Yan HG, et al. Targeting protein translation in human nonsmall cell lung cancer via combined MEK and mammalian target of rapamycin suppression. Cancer Res. 2007; 67: 11300-11308.
  • 41
    Qian DZ, Kato Y, Shabbeer S, et al. Targeting tumor angiogenesis with histone deacetylase inhibitors: the hydroxamic acid derivative LBH589. Clin Cancer Res. 2006; 12: 634-642.
  • 42
    Verheul HMW, Salumbides B, Van Erp K, et al. Combination strategy targeting the hypoxia inducible factor-1α with mammalian target of rapamycin and histone deacetylase inhibitors. Clin Cancer Res. 2008; 14: 3589-3597.
  • 43
    Shah O, Wang Z, Hunter T. Inappropriate activation of the TSC/Rheb/mTOR/S6k cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol. 2004; 14: 1650-1656.
  • 44
    Sun SY, Rosenberg LM, Wang X, et al. Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res. 2005; 65: 7052-7058.
  • 45
    Wan X, Harkavy B, Shen N, et al. Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene. 2007; 26: 1932-1940.
  • 46
    O'Reilly KE, Rojo F, She Q, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006; 6: 1500-1508.
  • 47
    Shi Y, Yan H, Frost P, et al. Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther. 2005; 4: 1533-1540.
  • 48
    Stolovich M, Tang H, Hornstein E, et al. Transduction of growth or mitogenic signals into translational activation of TOP mRNAs is fully reliant on the phosphatidylinositol 3-kinase-mediated pathway but requires neither S6K1 nor rpS6 phosphorylation. Mol Cell Biol. 2002; 22: 8101-8113.