SEARCH

SEARCH BY CITATION

References

  • 1
    Vesselle H,Schmidt RA,Pugsley JM, et al. Lung cancer proliferation correlates with [F-18] fluorodeoxyglucose positron emission tomography. Clin Cancer Res. 2000; 124: 278-284.
  • 2
    Nomori H,Watanabe K,Ohtsuka T, et al. Fluorine 18-tagged fluorodeoxyglucose positron emission tomographic scanning to predict lymph node metastasis, invasiveness, or both, in clinical T1N0M0 lung adenocarcinoma. J Thorac Cardiovasc Surg. 2004; 128: 396-401.
  • 3
    Watanabe K,Nomori H,Ohtsuka T, et al. F-18 fluorodeoxyglucose positron emission tomography can predict pathological tumor stage and proliferative activity determined by Ki-67 in clinical stage IA lung adenocarcinoma. Jpn J Clin Oncol. 2006; 36: 403-409.
  • 4
    Travis WD,Brambilla E,Muller-Hermelink HK,Harris CC. Pathology and Genetics of Tumours of the Lung, Pleura, Thymus, and Heart. Lyon, France: IARC Press; 2004.
  • 5
    Sung YM,Lee KS,Kim BT,Choi JY,Shim YM,Yi CA. 18F-FDG PET/CT of thymic epithelial tumors: usefulness for distinguishing and staging tumor subgroups. J Nucl Med. 2006; 47: 1628-1634.
  • 6
    Sasaki M,Kuwabara Y,Ichiya Y, et al. Differential diagnosis of thymic tumors using a combination of 11C-methionine PET and FDG PET. J Nucl Med. 1999; 40: 1595-1601.
  • 7
    El-Bawab H,Al-Sugair AA,Rafay M,Hajjar W,Mahdy M,Al-Kattan K. Role of fluorine-18 fluorodeoxyglucose positron emission tomography in thymic pathology. Eur J Cardiothorac Surg. 2007; 31: 731-736.
  • 8
    Howard BV. Acetate as a carbon source for lipid synthesis in cultured cells. Biochim Biophys Acta. 1977; 488: 145-151.
  • 9
    Long VJW. Incorporation of 1-11C-acetate into the lipids of isolated epidermal cells. Br J Dermatol. 1976; 94: 243-252.
  • 10
    Brown M,Marshall DR.Sobel BE, et al. Delineation of myocardial oxygen utilization with carbon-11-labeled acetate. Circulation. 1987; 76: 687-696.
  • 11
    Lear JL. Relationship between myocardial clearance rates of carbon-11-acetate-deribed radiolabel and oxidative metabolism: physiologic basis and clinical significance. J Nucl Med. 1991; 32: 1957-1960.
  • 12
    Ho C,Yeung DW. C-11 acetate PET imaging in hepatocellular carcinoma and other liver masses. J Nucl Med. 2003; 44: 213-221.
  • 13
    Oyama N,Akino H,Kanamaru H, et al. 11C-acetate PET imaging of prostate cancer. J Nucl Med. 2002; 43: 181-186.
  • 14
    Nomori H,Kosaka N,Watanabe K, et al. 11C-acetate positron emission tomography imaging for lung adenocarcinoma 1 to 3 cm in size with ground-glass opacity images on computed tomography. Ann Thorac Surg. 2005; 80: 2020-2025.
  • 15
    Ohtsuka T,Nomori H,Watanabe K, et al. Positive imaging of thymoma by 11C-acetate positron emission tomography. Ann Thorac Surg. 2006; 81: 1132-1134.
  • 16
    Kuo TT,Chan JK. Thymic carcinoma arising in thymoma is associated with alterations in immunohistochemical profile. Am J Surg Pathol. 1998; 22: 1474-1481.
  • 17
    Suster S,Moran CA. Primary thymic epithelial neoplasms showing combined features of thymoma and thymic carcinomas. A clinicopathologic study of 22 cases. Am J Surg Pathol. 1996; 20: 1469-1480.
  • 18
    Koga K,Matsuno Y,Noguchi M, et al. A review of 79 thymomas: modification of staging system and reappraisal of conventional division into invasive and non-invasive thymoma. Pathol Int. 1994; 44: 359-367.
  • 19
    Yoshimoto M,Waki A,Yonekura Y, et al. Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol. 2001; 28: 117-122.
  • 20
    Morimoto K,Kanoh K. The role of the de novo synthetic pathway in forming molecular species of phospholipids in resting lymphocytes from human tonsils. Biochim Biophys Acta. 1980; 617: 51-64.