SEARCH

SEARCH BY CITATION

Keywords:

  • intravesical therapy;
  • bladder cancer;
  • evidence based medicine;
  • transurethral resection of bladder tumor

Abstract

  1. Top of page
  2. Abstract
  3. MATERIALS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. Conflict of Interest Disclosures
  7. References

BACKGROUND:

Phase 3 clinical trials performed primarily outside the US demonstrate that intravesical instillation of chemotherapy immediately after transurethral resection of the bladder (TURB) decreases cancer recurrence rates. The authors sought to determine whether US urologists have adopted this practice, and its potential effect on costs of bladder cancer (BC) care.

METHODS:

By using 1997-2004 MEDSTAT claims data, the authors identified patients with newly diagnosed BC who underwent cystoscopic biopsy or TURB, and those who received intravesical chemotherapy within 1 day after TURB. Economic consequences of this treatment compared with TURB alone were modeled using published efficacy estimates and Medicare reimbursements. The authors used a time horizon of 3 years and assumed that this treatment was given for all newly diagnosed low-risk BC patients.

RESULTS:

Between 1997 and 2004, the authors identified 16,748 patients with newly diagnosed BC, of whom 14,677 underwent cystoscopic biopsy or TURB. Of these, only 49 (0.33%) received same-day intravesical instillation of chemotherapy. From 1997 through 2004, there has been little change in the use of this treatment. The authors estimated a 3-year savings of $538 to $690 (10% to 12%) per patient treated with TURB and immediate intravesical chemotherapy compared with TURB alone, reflecting a yearly national savings of $19.8 to $24.8 million.

CONCLUSIONS:

Instillation of intravesical chemotherapy immediately after TURB has not been embraced in the US. Adopting this policy would significantly lower the cost of BC care. Cancer 2009. © 2009 American Cancer Society.

Bladder cancer is the 4th most commonly diagnosed cancer in men and the 8th in women in the US. An estimated 61,420 new cases will be diagnosed in 2007, and 13,060 patients will die of this disease.1

Seventy-five percent of newly diagnosed bladder cancers are nonmuscle invasive (NMI).2, 3 These cancers often recur after seemingly complete transurethral resection of the bladder (TURB) because of new tumor development in other regions of the urothelium, tumor cell implantation resulting from spontaneous perturbations or those induced by instrumentation, and/or incomplete resection of the original malignancy.4, 5

Although recurring well and moderately differentiated NMI bladder cancer rarely progresses to a life-threatening condition, repeated TURBs and courses of intravesical instillations of immuno- and chemotherapeutic agents cause considerable inconvenience, expense, and morbidity. A single instillation of chemotherapy immediately after TURB has been proposed as a means of reducing recurrence by decreasing procedure-facilitated tumor implantation and eradicating field effect or persistent (incompletely resected or unrecognized) tumors.5-7 For over a decade, several prospective randomized-controlled clinical trials have shown that this treatment is safe and decreases recurrences by 17% to 44% compared with controls8-10 (Table 1), particularly for patients with newly diagnosed bladder cancers.5-7,11-13 Agents used include mitomycin C, doxorubicin, and thiotepa (all available in the US), as well as epirubicin and Epodil (neither available in the US).

Table 1. World Literature of Randomized Studies for Immediate Post-TURB Intravesical Instillation of a Chemotherapeutic Agent
ReferenceAgent (dose)/ ControlNo. of PatientsType of PatientStageInterval of Follow-upRecurrence Rate Outcome (Study Arm vs Control)
  1. TURB indicates transurethral resection of bladder tumor; MRC, Medical Research Council; ccNS, cubic centimeters of normal saline; NS, normal saline; INF, interferon.

Burnand6 1976Thiotepa (90 mg/100 cc)/observation51UnknownTa and T1Recurrences at 2-5–y follow-up57.9% vs 96.8% (P < .005)
Zincke35 1983Thiotepa (60 mg/60 mL H2O) vs doxir (50 mg/60mL H2O) vs H2O (3-arm study)4521% newTa, T1, TisRecurrence rate at 3-4 mo ThiotepaDoxirH2O
Overall30%32%71%
79% recurrentNew43%0%43%
Recurrent26%38%81%
MRC 1985Thiotepa (30 mg/50 mL)/observation256100% newTa and T1Recurrence rate at 2 y35.4% vs 41.3% (P = .7)
MRC 1994Follow-up of above study at 8.75 y showed no difference of time to primary recurrence, recurrence rate, or failure-free interval
Oosterlinck7 1993Epirubicin (80 mg in 50 ccNS)/50 cc of H2O39980% newTa and T1Recurrence rate per yearNew: 15% vs 31% (P < .0001)
20% recurrentRecurrent: 26% vs 35% (P = .38)
OverallOverall: 17 vs 32% (P < .0001)
Tolley10 1996Mitomycin C (40 mg/40 ccH2O)/observation306100% newTa and T1Recurrence rate at 2 years42% vs 55% (P = .01)
Ali-el-Dein8 1997Epirubicin (50 mg/50 mL NS)/observation10955% newTa and T1Recurrence rate at mean of 2.5 y24% vs 52% (P < .002)
45% recurrent
Solsona5 1999Mitomycin C (30 mg/50 mL of NS)/observation12190% newTa and T1Recurrence rate at 1 y22% vs 59% (P < .005)
10% recurrent
Rajala15 1999Epirubicin (100 mg) vs INF-α2b (50-M units) vs observation (3-arm study)200100% newTa and T1Recurrence rate at 2 y EpirubicinINF-αObservation
Overall32%62%60% (P < .05)
1 tumor27%63%55%
Multiple56%67%74%

In view of this evidence, we set out to determine whether US urologists have adopted this practice and to ascertain whether implementing post-TURB intravesical instillation therapy would be cost-saving.

MATERIALS AND METHODS

  1. Top of page
  2. Abstract
  3. MATERIALS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. Conflict of Interest Disclosures
  7. References

Data

The study was based on the analysis of individual medical claims provided by MEDSTAT (www.MEDSTAT.com), a healthcare information company currently following over 7 million covered lives, which provides benchmark databases and research services for managing costs and quality of healthcare in the US. We used MEDSTAT's Commercial Claims and Encounters (CCAE) and Medicare Supplemental Coverage claims databases, which have been validated and used for oncological and nononcological research studies.8-10 These databases are generally representative of the US population in terms of sex (49% male). The mean ages of the CCAE and Medicare populations were 34 and 74 years, respectively. This compares with a mean age of 72 years for all Medicare beneficiaries and 75 years if only those 65 years and older are included. A higher percentage of individuals included in MEDSTAT databases reside in the Southern US (50%) than the general population, whereas 36% of Medicare beneficiaries live in the Southern US.14

Study Sample and Drug Use

By using 1997-2004 MEDSTAT claims, we identified bladder cancer patients based on the International Classification of Diseases–Ninth Revision (ICD-9) code of 188.9. We chose 1997 because it was the first calendar year after a positive large randomized clinical trial using an agent readily available in the US was reported in the American literature.11,13,15 Several studies have examined the accuracy of ICD-9 coding for various conditions compared with medical records and physician assessment, and demonstrated significant sensitivity and specificity in identifying patients with index conditions (diabetes, chronic kidney disease, breast cancer, cerebral vascular accident, and stroke).16-18 Figure 1 presents the algorithm used to identify newly diagnosed patients with bladder cancer who received same-day post-TURB intravesical chemotherapy. We then identified patients who underwent cystoscopy with biopsy or TURB for any size bladder tumor (using Current Procedure Terminology [CPT] codes 52,204, 52,224, 52,234, 52,235, and 52,240). From these, using prescription drug claims and National Drug Code and CPT codes, we selected patients who received an intravesical instillation of a chemotherapeutic agent (mitomycin C, doxorubicin, or interferon alpha) on the day of, or the day after TURB. Administration of immediate intravesical therapy post-TURB is billed as an outpatient/ambulatory procedure (CPT 51,720) rather than a prescription drug, because it can only be administered by qualified medical personnel. Use of administrative claims data for evaluation of patterns of healthcare use is quite common and has been validated.8-10 Moreover, because errors in billing would lead to problems with payments, the quality of billing data is generally high.19

thumbnail image

Figure 1. The algorithm to identify bladder cancer patients who received same-day intravesical instillation of a chemotherapeutic agent after transurethral resection of the bladder is shown. ICD-9 indicates International Classification of Diseases–Ninth Revision.

Download figure to PowerPoint

Cost and Utilization

On the basis of prospective, randomized studies reported in the English language literature, we identified standard care and likely outcomes for patients with newly diagnosed NMI bladder cancer after initial TURB with 0, 1, 2, or 3 episodes of recurrence over a 3-year period.20-29 To assign cost values to the typical utilization associated with each of the recurrence patterns, with and without immediate post-TURB intravesical instillation of chemotherapeutic agents, we used Medicare reimbursement fees for the related procedures and medications (Table 2). We assumed that all predicted recurrences would be recognized at the first (3 month) cystoscopy after the most recent TURB. In 1 analysis, we assumed intravesical bacillus Calmette-Guérin (BCG) would be used after the initial recurrence, whereas in the second we assumed mitomycin C would be.

Table 2. Medicare Reimbursement Rates for Procedures Related to the Treatment and Maintenance of Bladder Cancer
 2005 Costs*
  • TURB indicates transurethral resection of the bladder; BCG, bacillus Calmette-Guérin; INF, interferon.

  • *

    In US dollars.

Cystoscopy196
TURB1595
BCG instillation392
BCG and INF instillation1055
TURB with intravesical instillation1856
Medication cost (mitomycin C)260

The results for each analysis are presented as an average cost per patient for a 3-year period. For the group not receiving immediate post-TURB instillation therapy, we assumed that 60% would not have a recurrence during this period.26 For the first analysis, the initial recurrence would be treated with induction (and maintenance, if successful) BCG, and BCG + alpha-interferon would be used after the second recurrence. For the group receiving same-day intravesical instillation therapy, we assumed that recurrences would be reduced by 25% and that initial and second recurrences would be treated with induction and maintenance BCG and BCG + alpha-interferon, respectively, with the same the efficacy as for those not receiving same-day intravesical instillation therapy who recurred.

In the second analysis, we assumed that 6 instillations of mitomycin C would be given for the initial recurrence, and those experiencing a second recurrence would receive induction (and maintenance, if successful) BCG, whereas those with a second recurrence would receive BCG + alpha-interferon. The efficacy of these agents was assumed to be the same as in our first analysis. The same assumption was made for the efficacy of immediate post-TURB intravesical therapy as in the first analysis: a 25% reduction in first recurrences. The 3-year time horizon was chosen, because the overwhelming majority of bladder cancer recurrences occur within this period.26 In addition, the American Urological Association (AUA) protocol is set for intense follow-up for 3 years after the initial TURB to detect recurrence and then switches to a less intense regimen. Furthermore, we believe that the majority of patients do not undergo more than 3 resections of bladder cancer and therefore have spread it over a 3-year period, which would typically be seen in patients with low-risk disease. We assumed that prior use of intravesical chemotherapy after TURB would have no effect on the progression of subsequently diagnosed muscle-invasive bladder cancer. We did not apply discounting in this study, because we did not anticipate a dramatic effect over a 3-year period.

Because same-day intravesical instillation therapy is not recommended for high-grade or muscle-invading cancers, carcinoma in situ (TIS), or predominantly nonurothelial cancers, we assumed that no patients in our analysis had these cancers. To be very conservative in terms of predicting cost savings and effectiveness, we assumed no patient would progress to high grade, carcinoma in situ (TIS), or stage T2 + disease during the period of follow-up (because progression to any of these stages/grades mandates more complex and expensive therapies).

Because there is wide variation in the reported efficacy of intravesical instillation therapy, we conducted a threshold analysis to estimate the minimal effectiveness of this treatment required to balance the added cost of medication and care compared with the standard TURB. To perform the threshold analysis, we expressed the average cost of a patient treated with mitomycin C for the first occurrence as a function of risk reduction, compared the average cost of a patient treated with BCG for the first occurrence of bladder cancer to the average cost of a patient treated with mitomycin C, and solved this equation for risk reduction. This value represented the minimal treatment effect needed for the 2 options to be considered equal in terms of cost.

RESULTS

  1. Top of page
  2. Abstract
  3. MATERIALS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. Conflict of Interest Disclosures
  7. References

Use of an Intravesical Chemotherapeutic Agent After TURB

By using the CCAE and Medicare databases from 1997 to 2004, we identified 16,748 patients whose claims listed bladder cancer as their primary or secondary diagnosis. From 1997 through 2004, 444,740 patients were estimated from Surveillance, Epidemiology, and End Results data to develop bladder cancer,30 and thus 4% of all newly diagnosed bladder cancers were captured by these databases. A total of 14,677 (87.6%) subsequently underwent cystoscopy with biopsy or TURB of their bladder cancer (Table 3). Of these, only 49 (0.33%) received same- or following-day instillation therapy after their surgical procedure (Table 3). Most of these patients received mitomycin C (48 of the 49; 98%), whereas 1 patient (2%) received interferon alpha-2B. No patient received doxorubicin or thiotepa. When analyzing data from between 1997 and 2004, we detected no statistically significant changes in the annual rates of new diagnosis or treatment of bladder cancer, or the use of same-day intravesical therapy after TURB in this cohort (Table 3).

Table 3. Counts of Patients Undergoing Cystoscopy With Biopsy (CPT code 52204) or Transurethral Resection of Bladder Tumor (CPT code 52224, 52234, 52235, 52240) Among Patients With Newly Diagnosed Bladder Cancer
Index Year19971998199920002001200220032004Total
  1. CPT indicates Current Procedure Terminology; TURB, transurethral resection of the bladder.

Total No. of intravesical instillations post-TURB1753999649
Procedures/y1066166814161194312421742254178114677
% of instillations/y0.0930.4200.3530.2510.2880.4130.390.3360.333

Economic Benefits of Instilling Intravesical Chemotherapy Immediately After TURB

For the base case analysis, we assumed that the treatment was given for all newly diagnosed low-risk patients (grades 1 and 2 and stages Ta andT1). By evaluating the literature, we estimated that bladder cancer patients without recurrence for >3 years will receive 10 surveillance cystoscopies (Fig. 2). Based largely on AUA guidelines and the results of randomized clinical trials,20-26,28,29,31 patients who had recurrences underwent further resections and 6 weekly instillations of BCG with 3 maintenance instillations of BCG every 6 months for 3 years. Of those starting this course, we assumed that 25% would recur and undergo another TURB followed by instillations with BCG and alpha-interferon. Of these patients, we assumed that 60% would recur. Treatment after a second or third recurrence in this brief a time is not standardized20-26,28,29,31; to be extremely conservative, we assumed patients would subsequently not recur and be observed closely (ie, frequent cystoscopies) (Fig. 2). The second model used mitomycin C for the first recurrence, assuming 50% would recur during the period of follow-up.20,22-25,27,31-34 The second recurrence was treated with induction BCG and maintenance therapy if successful, and BCG + alpha-interferon was used for the third recurrence. The anticipated efficacy of BCG and BCG + alpha-interferon was assumed to be the same as in the first analysis. As with model 1, we assumed patients experiencing a third recurrence would not recur subsequently, and be managed by frequent monitoring. Because the literature is equivocal regarding advantages of post-TURB single-instillation intravesical therapy in patients with recurrent bladder cancers,7, 29 we did not presume that patients with recurrences would receive this treatment.11, 35

thumbnail image

Figure 2. (Top) Algorithm is shown for the treatment of the recurrence of nonmuscle invasive bladder cancer over a 3-year period with bacillus Calmette-Guérin (BCG). (Bottom) Algorithm is shown for the treatment of the recurrence of nonmuscle invasive bladder cancer over a 3-year period with mitomycin C. TCC indicates transitional cell cancer; TURBT, transurethral resection of a bladder tumor; Cysto, cystoscopy; INF, interferon; Mito, mitomycin.

Download figure to PowerPoint

With the utilization rates and outcomes discussed, we estimated that without same-day therapy and assuming BCG was administered at first recurrence (model 1) it would cost on average $5760 to treat 1 patient with low-risk NMI bladder cancer for 3 years (Table 4). If all patients receive same-day post-TURB intravesical chemotherapy (we assumed mitomycin C would be used), the average per patient cost of 3 years of care is reduced to $5070, a cost savings of $689 (12%) per patient for treatment with same-day intravesical chemotherapy compared with TURB alone. Nationally, this represents annual savings of $24.8 million (60% of newly diagnosed bladder cancer per year1, 36). A similar analysis was done with patients receiving mitomycin C on initial recurrence, BCG for the second recurrence, and BCG and alpha-interferon for the third. This would save $538 per patient and save $19.8 million nationally (Fig. 2, Table 4). Even if patients who failed the first BCG induction course were treated with a repeat course of BCG rather than BCG + alpha-interferon, the savings for immediate post-TURB intravesical instillation therapy would still be substantial: $21.2 million if BCG was used for the first recurrence, and $19.8 million if mitomycin C was used (data not shown).

Table 4. Average 3-Year Cost of Treating Recurrent Bladder Cancer (for a Cohort of 1000 Bladder Cancer Patients)
 No RecurrenceOne RecurrenceTwo RecurrencesThree Recurrences
Model 1: Patients Treated With BCG for First Recurrence
  1. BCG indicates bacillus Calmette-Guerin; $, US dollars.

 % of Patients, without intravesical instillation60%30%4%6%
 Costs, $1,176,4202,947,974615,9931,019,704
 Average, $5760   
[DOWNWARDS ARROW] Decrease in Recurrence by 25%
 % of patients treated with intravesical instillation70%22.5%3%4.5%
 Cost, $1,372,4902,210,981461,994764,780
 Average+$260 for instillation mitomycin5070   
Model 2: Patients Treated With Mitomycin C for First Recurrence
 % of patients, without intravesical instillation60%20%15%5%
 Costs, $1,176,4201,102, 1681,947,687927,981
 Average, $5154   
[DOWNWARDS ARROW] Decrease in Recurrence by 25%
 % of patients treated with intravesical instillation70%15%11.25%3.75%
 Cost, $1,372,490826,6261,460,765695,918
 Average+$260 for instillation mitomycin4616   

Our threshold analysis demonstrated that the addition of single-dose intravesical therapy after TURB must decrease recurrence by at least 7% (for the BCG assumption) to 10% (for mitomycin C) to cover the additional cost of services and medication.

DISCUSSION

  1. Top of page
  2. Abstract
  3. MATERIALS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. Conflict of Interest Disclosures
  7. References

Despite compelling evidence regarding the effectiveness of same-day intravesical therapy, between 1997 and 2004, only 0.33% of eligible US patients received this treatment. We demonstrated that in addition to reducing the rate of bladder cancer recurrences, same-day intravesical therapy could also save $538 to $689 of medical expenses per patient, or over $15 to nearly $25 million a year nationally.

The rationale behind single immediate instillation intravesical chemotherapy is that by reducing the rate of implantation, the likelihood of disease recurrence will decrease, as will the need for repeat TURBs and for longer courses of intravesical therapy. Table 1 reviews the results of randomized prospective trials of same-day intravesical instillation chemotherapy after TURB. This treatment has been shown to reduce recurrences by 17% to 44% compared with controls. A recent meta-analysis has confirmed that this treatment has decreased the risk of recurrence by 39% in patients with stage Ta and T1 bladder cancer.37

The purpose of the analysis was to provide a conservative estimate of the economic benefit associated with using intravesical chemotherapy after TURB in the US. Because differences between countries in terms of healthcare systems (eg, financing and organization) could have a substantial impact on the types of services patients receive, it is necessary to focus on a specific healthcare system. We chose the US healthcare system, and specifically the health insurer's perspective, to evaluate the impact of this treatment on the overall cost of bladder cancer care. Similarly, we used Medicare reimbursement rates as a more conservative, lower-bound estimate of the potential savings associated with the use of this intervention among both Medicare and privately insured patients. Another reason for using Medicare rates is that the average age of bladder cancer patients at the time of diagnosis is >70 years.2

Several assumptions were made to identify our sample population. The first was that the 3-year recurrence rate of newly resected NMI bladder cancer is 40%. This has been shown in a variety of follow-up studies of NMI bladder cancer as well as in placebo arms of randomized trials using BCG.20-26,28,29,31 Thus, in building our model we assumed that 40% of patients with newly diagnosed and completely resected low-risk bladder cancer will have recurrence during the 3-year follow-up period. We also assumed that there was no stage progression to muscularis propria invading disease. This was an extremely conservative estimate, because in published series, stage progression has been reported to occur in 1% to 20% of patients with low-risk NMI cancer. The cost of managing invasive bladder cancer is far greater than for NMI disease, and so failure to consider stage progression biased our cost projections against immediate post-TURB instillation therapy. At the time this study was carried out, the AUA had not established immediate intravesical therapy as the standard of care but did recommend it as a therapeutic option,38 whereas the European Association of Urology had included it as the standard of care for superficial bladder cancer.39 The recently revised AUA guidelines have now included it as an “option” (the weakest grade of guideline with the greatest flexibility in application) for care, although not as a “standard” or “recommendation”.28

The next part of the model dealt with the treatment of patients with recurrences. Largely based on professional guidelines by the AUA and the results of randomized clinical trials,20-26,28,29,31 such patients underwent 6 weekly instillations of BCG with 3 maintenance instillations of BCG every 6 months for 3 years (although other forms of intravesical therapy could be used). Again based on published reports,20-26,28,29,31 we assumed that 25% of those receiving this course would recur and undergo further instillations with BCG and alpha-interferon. Of those patients, we assumed that 60% would recur again.36, 40 At this point, the decision would be influenced by the patient's comorbidities and wishes and nonstandard treatment by the treating physician; to be very conservative, we projected that there would not be further recurrences, and that only frequent cystoscopic monitoring would take place. This again reduced costs compared with the more aggressive therapies that would often be selected (eg, cystectomy). Similarly, we modeled the cost if for the first recurrence 6 intravesical instillations of mitomycin C were used with an assumption that 50% receiving this treatment would recur.24, 41 Subsequent recurrences were treated with BCG or BCG + alpha-interferon. For both of these models, we estimated that were they to occur, all recurrences took place immediately after the index or subsequent TURB. Although this is an oversimplification, the majority of recurrences take place within 3 to 6 months of the index TURB and over 70% occur within 1 year.28 Because most published trials and series end at the time of the initial recurrence, few data are available about the times of second and third recurrences. With longer intervals between recurrences, expenses would have changed little, as long as recurrences were treated as they were in the models. In addition, because recurrences took place at the first cystoscopic evaluation after TURB, it is likely that standard intravesical therapy would have been recommended (because of the frequent recurrences), rather than simple continuation of observational management. By using the above assumptions, we formulated models for the treatment of a patient with newly diagnosed NMI bladder cancer.

Although cystectomy is sometimes performed for patients who recur after BCG treatments, this is almost exclusively reserved for patients with high-grade disease. It is likely that very few (if any) patients would undergo it within the first 3 years of being diagnosed with low-grade, NMI bladder cancer.28 Furthermore, we are unaware of any data addressing the circumstance (the proportion of patients with low-risk newly diagnosed bladder cancer who are treated with BCG, recur after that treatment, and immediately go on to cystectomy) to guide our model. Both because such a circumstance is very rare and generally would occur beyond the time horizon of this study, it is not included in our model. Moreover, to be conservative, we assumed no grade (to high grade) or stage progression (to stage T2) would occur. These occur rarely in the population being considered.28 If either occurred, cystectomy would be more likely. The huge cost associated with this procedure, which would be far more likely to occur in the observed arm, would further bias the results of the study in favor of immediate post-TURB intravesical therapy. Lastly, we took a conservative estimate of 25% for the reduction in recurrence rate after immediate post-TURB intravesical instillation.37

As with all studies using healthcare databases, several factors should be considered when interpreting our findings. First, although the sample was drawn from more than 7 million lives, it may not be representative of the general population. There are regional biases in medical and urologic care,37, 42 and it is possible that the geographic imbalance in our data may misrepresent what is occurring in the US as a whole. However, given the only modest imbalance in geographic distribution, and the verified utilization of this database for other medical and oncologic conditions, this likely provides a relatively small bias, not explaining our results. Furthermore, although the databases allowed for the analysis of a large sample of patients across the US, only patients with commercial health coverage or private Medicare supplemental coverage were analyzed. Finally, these findings are based on retrospective analyses of claims data, and reliance on this data has limitations. For example, patients may receive treatment that is not submitted to their health plan for reimbursement, and thus is not included in claims data, and a small proportion of claims may be subject to coding errors. However, we believe our methodology to determine how often immediate post-TURB instillation therapy is used is reliable, because it is administered by qualified medical personnel (and thus has a CPT code). Moreover, because errors in billing that lead to problems in payments rarely go uncorrected, billing data are usually highly reliable.19

Because we used Medicare reimbursement rates (which are usually lower than the rates reimbursed by private health plans) to estimate the cost of interventions, our estimates represent the lower bound of possible savings. However, the effectiveness of the same-day intravesical instillation chemotherapy may also vary depending on patient risk factors and medical histories. We demonstrated that as long as the intervention is at least 7% to 10% more effective than the TURB alone, post-TURB single intravesical instillation chemotherapy provides economic savings.

Why is the treatment performed so rarely? One reason is that although it is considered safe and well tolerated,5-7,11-13 there obviously are some patients with suspected bladder perforation or post-TURB hematuria who should not receive it. Another reason is a technical matter involving dispensing and administering chemotherapy. Many American centers require chemotherapy nurses and ancillary staff to handle and instill these agents, preventing most operating or recovery room nurses from administering them. Currently, some urologists resort to instilling and overseeing the dispensing and handling themselves. The inconvenience of ordering, instilling, and waiting for the chemotherapy to dwell for 1-2 hours is, for a busy practitioner, clearly a deterrent to its use. Another barrier to its acceptance is the economic burden placed on the hospital. Currently, the additional expense of using intravesical chemotherapy in a hospital-based setting (eg, operating room) is borne by the hospital without reimbursement for longer recovery room time, increased monitoring by specially trained nursing staff, and the expenses of disposing of the chemotherapeutic agent.

Another possible reason for not performing this treatment may be the way new scientific data are transmitted to and incorporated into practice by physicians. Although numerous clinical trials have shown its effectiveness, these data have not been widely accepted by US urologists. Whether this is because they are unaware of the published data or because these trials have largely been performed outside the US without the participation of American centers is unclear. American urologists may be resistant to embracing this approach without validation by a large American study. The recent revision of AUA guidelines may have an influence on altering this practice, but this will not be ascertainable for several years.

Conclusions

Despite generalized acceptance of same-day intravesical instillation chemotherapy after TURB by urologists outside the US, this policy has not been embraced by American urologists. Reasons for this are unclear. Regardless of the reasons, we have shown that assuming conservative parameters for efficacy, adopting this policy would considerably lower the cost of caring for bladder cancer in the US.

Conflict of Interest Disclosures

  1. Top of page
  2. Abstract
  3. MATERIALS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. Conflict of Interest Disclosures
  7. References

Katia Noyes was supported in part by grant K01 AG 20,980 from the National Institute of Aging.

Ralph Madeb was supported in part by an Empire State Grant.

This work was also supported by the Ashley Family Foundation.

References

  1. Top of page
  2. Abstract
  3. MATERIALS AND METHODS
  4. RESULTS
  5. DISCUSSION
  6. Conflict of Interest Disclosures
  7. References
  • 1
    Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006. CA Cancer J Clin. 2006; 56: 106-130.
  • 2
    Madeb R, Messing EM. Gender, racial and age differences in bladder cancer incidence and mortality. Urol Oncol. 2004; 22: 86-92.
  • 3
    Messing EM. Urothelial tumors of the urinary tract. In: WalshPC, RetikAB, VaughanED, eds. Campbell's Urology. 8th ed. Philadelphia, PA: WB Saunders; 2002: 2732-2784.
  • 4
    Klan R, Loy V, Huland H. Residual tumor discovered in routine second transurethral resection in patients with stage T1 transitional cell carcinoma of the bladder. J Urol. 1991; 146: 316-318.
  • 5
    Solsona E, Iborra I, Ricos JV, Monros JL, Casanova J, Dumont R. Effectiveness of a single immediate mitomycin C instillation in patients with low risk superficial bladder cancer: short and long-term followup. J Urol. 1999; 161: 1120-1123.
  • 6
    Burnand KG, Boyd PJ, Mayo ME, Shuttleworth KE, Lloyd-Davies RW. Single dose intravesical thiotepa as an adjuvant to cystodiathermy in the treatment of transitional cell bladder carcinoma. Br J Urol. 1976; 48: 55-59.
  • 7
    Oosterlinck W, Kurth KH, Schroder F, Bultinck J, Hammond B, Sylvester R. A prospective European Organization for Research and Treatment of Cancer Genitourinary Group randomized trial comparing transurethral resection followed by a single intravesical instillation of epirubicin or water in single stage Ta, T1 papillary carcinoma of the bladder. J Urol. 1993; 149: 749-752.
  • 8
    Ali-el-Dein B, Nabeeh A, el-Baz M, Shamaa S, Ashamallah A. Single-dose versus multiple instillations of epirubicin as prophylaxis for recurrence after transurethral resection of pTa and pT1 transitional-cell bladder tumours: a prospective, randomized controlled study. Br J Urol. 1997; 79: 731-735.
  • 9
    Shuin T, Kubota Y, Noguchi S, et al. A phase II study of prophylactic intravesical chemotherapy with 4′-epirubicin in recurrent superficial bladder cancer: comparison of 4′-epirubicin and Adriamycin. Cancer Chemother Pharmacol. 1994; 35( suppl): S52-S56.
  • 10
    Tolley DA, Parmar MK, Grigor KM, et al. The effect of intravesical mitomycin C on recurrence of newly diagnosed superficial bladder cancer: a further report with 7 years of follow up. J Urol. 1996; 155: 1233-1238.
  • 11
    Cohen FJ, Neslusan CA, Conklin JE, Song X. Recent antihyperglycemic prescribing trends for US privately insured patients with type 2 diabetes. Diabetes Care. 2003; 26: 1847-1851.
  • 12
    Hillman AL, Schwartz JS, Willian MK, et al. The cost-effectiveness of terazosin and placebo in the treatment of moderate to severe benign prostatic hyperplasia. Urology. 1996; 47: 169-178.
  • 13
    Lyman GH, Berndt ER, Kallich JD, et al. The economic burden of anemia in cancer patients receiving chemotherapy. Value Health. 2005; 8: 149-156.
  • 14
    Medicare Current Beneficiary Survey. Baltimore, MD: Center for Medicare and Medicaid Services; 2000.
  • 15
    Rajala P, Liukkonen T, Raitanen M, et al. Transurethral resection with perioperative instillation on interferon-alpha or epirubicin for the prophylaxis of recurrent primary superficial bladder cancer: a prospective randomized multicenter study–Finnbladder III. J Urol. 1999; 161: 1133-1135.
  • 16
    Birman-Deych E, Waterman AD, Yan Y, Nilasena DS, Radford MJ, Gage BF. Accuracy of ICD-9-CM codes for identifying cardiovascular and stroke risk factors. Med Care. 2005; 43: 480-485.
  • 17
    Freeman JL, Zhang D, Freeman DH, Goodwin JS. An approach to identifying incident breast cancer cases using Medicare claims data. J Clin Epidemiol. 2000; 53: 605-614.
  • 18
    Winkelmayer WC, Schneeweiss S, Mogun H, Patrick AR, Avorn J, Solomon DH. Identification of individuals with CKD from Medicare claims data: a validation study. Am J Kidney Dis. 2005; 46: 225-232.
  • 19
    Iezzoni L. Risk Adjustment for Measuring Health Care Outcomes. 3rd ed. Chicago, IL: Health Administration Press; 2003.
  • 20
    Herr HW, Badalament RA, Amato DA, Laudone VP, Fair WR, Whitmore WFJr. Superficial bladder cancer treated with bacillus Calmette-Guerin: a multivariate analysis of factors affecting tumor progression. J Urol. 1989; 141: 22-29.
  • 21
    Herr HW, Klein EA, Rogatko A. Local BCG failures in superficial bladder cancer. A multivariate analysis of risk factors influencing survival. Eur Urol. 1991; 19: 97-100.
  • 22
    Herr HW, Wartinger DD, Fair WR, Oettgen HF. Bacillus Calmette-Guerin therapy for superficial bladder cancer: a 10-year followup. J Urol. 1992; 147: 1020-1023.
  • 23
    Herr HW. Natural history of superficial bladder tumors: 10- to 20-year follow-up of treated patients. World J Urol. 1997; 15: 84-88.
  • 24
    Lamm DL, Blumenstein BA, Crawford ED, et al. Randomized intergroup comparison of bacillus Calmette-Guerin immunotherapy and mitomycin C chemotherapy prophylaxis in superficial transitional cell carcinoma of the bladder. Urol Oncol. 1995; 1: 119-126.
  • 25
    Lamm DL. Long-term results of intravesical therapy for superficial bladder cancer. Urol Clin North Am. 1992; 19: 573-580.
  • 26
    Lamm DL, Blumenstein BA, Crissman JD, et al. Maintenance bacillus Calmette-Guerin immunotherapy for recurrent TA, T1 and carcinoma in situ transitional cell carcinoma of the bladder: a randomized Southwest Oncology Group study. J Urol. 2000; 163: 1124-1129.
  • 27
    Lamm DL. Intravesical therapy for superficial bladder cancer: slow but steady progress. J Clin Oncol. 2003; 21: 4259-4260.
  • 28
    Messing E, Kim KM, Sharkey F, et al. Randomized Prospective Phase III Trial of Difluoromethylornithine vs Placebo in Preventing Recurrence of Completely Resected Low Risk Superficial Bladder Cancer. J Urol. 2006; 176: 500-504.
  • 29
    Sylvester RJ, van der Meijden AP, Lamm DL. Intravesical bacillus Calmette-Guerin reduces the risk of progression in patients with superficial bladder cancer: a meta-analysis of the published results of randomized clinical trials. J Urol. 2002; 168: 1964-1970.
  • 30
    American Cancer Society. Statistics of Cancer Incidence 1997-2006. Available at: http://www.cancer.org/docroot/STT/stt_0_2004.asp?sitearea=STT&level=1 Accessed March 2009.
  • 31
    Herr HW. Intravesical therapy. A critical review. Urol Clin North Am. 1987; 14: 399-404.
  • 32
    Herr HW, Laudone VP, Badalament RA, et al. Bacillus Calmette-Guerin therapy alters the progression of superficial bladder cancer. J Clin Oncol. 1988; 6: 1450-1455.
  • 33
    Lamm DL. Bladder cancer: twenty years of progress and the challenges that remain. CA Cancer J Clin. 1998; 48: 263-268.
  • 34
    Lamm DL. Management of bladder cancer. J Urol. 2004; 171: 2482-2483.
  • 35
    Zincke H, Utz DC, Taylor WF, Myers RP, Leary FJ. Influence of thiotepa and doxorubicin instillation at time of transurethral surgical treatment of bladder cancer on tumor recurrence: a prospective, randomized, double-blind, controlled trial. J Urol. 1983; 129: 505-509.
  • 36
    Messing EM, Madeb R, Young T, et al. Long-term outcome of hematuria home screening for bladder cancer in men. Cancer. 2006; 107: 2173-2179.
  • 37
    Sylvester RJ, Oosterlinck W, van der Meijden AP. A single immediate postoperative instillation of chemotherapy decreases the risk of recurrence in patients with stage Ta T1 bladder cancer: a meta-analysis of published results of randomized clinical trials. J Urol. 2004; 171: 2186-2190, quiz 2435.
  • 38
    Smith JAJr, Labasky RF, Cockett AT, Fracchia JA, Montie JE, Rowland RG. Bladder cancer clinical guidelines panel summary report on the management of nonmuscle invasive bladder cancer (stages Ta, T1 and TIS). The American Urological Association. J Urol. 1999; 162: 1697-1701.
  • 39
    Oosterlinck W, Lobel B, Jakse G, Malmstrom PU, Stockle M, Sternberg C. Guidelines on bladder cancer. Eur Urol. 2002; 41: 105-112.
  • 40
    Madeb R, Messing EM. Long-term outcome of home dipstick testing for hematuria. World J Urol. 2008; 26: 19-24.
  • 41
    Duque JL, Loughlin KR. An overview of the treatment of superficial bladder cancer. Intravesical chemotherapy. Urol Clin North Am. 2000; 27: 125-135, x.
  • 42
    McNaughton CM, Barry MJ, Zietman A, et al. United States radiation oncologists' and urologists' opinions about screening and treatment of prostate cancer vary by region. Urology. 2002; 60: 628-633.