SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Goldenberg DM, Sharkey RM. Advances in cancer therapy with radiolabeled monoclonal antibodies. Q J Nucl Med Mol Imaging. 2006; 50: 248-264.
  • 2
    Chatal JF. Radioimmunotherapy, a new breakthrough in the treatment of follicular non-Hodgkin's lymphoma: the European perspective. Cancer Biother Radiopharm. 2006; 21: 1-4.
  • 3
    Goldenberg DM, Horowitz JA, Sharkey RM, et al. Targeting, dosimetry, and radioimmunotherapy of B-cell lymphomas with iodine-131-labeled LL2 monoclonal antibody. J Clin Oncol. 1991; 9: 548-564.
  • 4
    Juweid M, Sharkey RM, Markowitz A, et al. Treatment of non-Hodgkin's lymphoma with radiolabeled murine, chimeric, or humanized LL2, an anti-CD22 monoclonal antibody. Cancer Res. 1995; 55: 5899s-5907s.
  • 5
    Juweid M, Stadtmauer E, Sharkey RM, et al. Pharmacokinetics, dosimetry and initial therapeutic results with 131I- and 111In-/90Y-labeled humanized LL2 anti-CD22 monoclonal antibody in patients with relapsed/refractory non-Hodgkin's lymphoma (NHL). Clin Cancer Res. 1999; 5: 3292s-3303s.
  • 6
    Sharkey RM, Brenner A, Burton J, et al. Radioimmunotherapy of non-Hodgkin's lymphoma with 90Y-DOTA humanized anti- CD22 IgG (90Y-epratuzumab): do tumor targeting and dosimetry predict therapeutic response? J Nucl Med. 2003; 44: 2000-2018.
  • 7
    Linden O, Hindorf C, Cavalin-Stahl E, et al. Dose-fractionated radioimmunotherapy in non-Hodgkin's lymphoma using DOTA-conjugated, 90Y-radiolabeled, humanized anti-CD22 monoclonal antibody, epratuzumab. Clin Cancer Res. 2005; 11: 5215-5222.
  • 8
    Griffiths GL, Govindan SV, Sharkey RM, Fisher DR, Goldenberg DM. 90Y-DOTA-epratuzumab: An agent for radioimmunotherapy of non-Hodgkin's lymphoma. J Nucl Med. 2003; 44: 77-84.
  • 9
    Siegel JA, Wessels BW, Watson EE, et al. Bone marrow dosimetry and toxicity for radioimmunotherapy. Antibodies Immunoconjugates Radioimmunopharm. 1990; 3: 213-233.
  • 10
    Shen S, DeNardo GL, Sgouros G, O'Donnell RT, DeNardo SJ. Practical determination of patient-specific marrow dose using radioactivity concentration in blood and body. J Nucl Med. 1999; 40: 2102-2106.
  • 11
    Sgouros G. Bone marrow dosimetry for radioimmunotherapy: theoretical considerations. J Nucl Med. 1993; 34: 689-694.
  • 12
    Siegel JA, Yeldell D, Goldenberg DM, et al. Red marrow radiation dose adjustment using plasma FLT3-L cytokine levels: Improved correlations between hematologic toxicity and bone marrow dose for radioimmunotherapy patients. J Nucl Med. 2003; 44: 67-76.
  • 13
    Williams T, Kelley C. Available at: http://www.gnuplot. info. Accessed February 18, 2009.
  • 14
    Ferrer L, Carlier T, Lisbona A, Bardies M. An ImageJ plugin to create WB TAC using CT scanner. Eur. J Nucl Med. 2007; 34( suppl): S198.
  • 15
    Seo Y, Wong KH, Sun M, Franc BL, Hawkins RA, Hasegawa BH. Correction of photon attenuation and collimator response for a body-contouring spect/ct imaging system. J Nucl Med. 2005; 46: 868-877.
  • 16
    Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage. 2006; 31: 1116-1128.
  • 17
    Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto SA. Practical method for position-dependent compton-scatter correction in single photon emission ct. IEEE Trans Med Imaging. 1991; 10: 408-412.
  • 18
    Thevenaz P, Ruttimann UE, Unser MA. Pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process. 1998; 7: 27-41.
  • 19
    Siegel JA, Lee RE, Pawlyk DA, Horowitz JA, Sharkey RM, Goldenberg DM. Sacral scintigraphy for bone marrow dosimetry in radioimmunotherapy. Int J Rad Appl Instrum B. 1989; 16: 553-559.
  • 20
    Shen S, Meredith RF, Duan J, et al. Improved prediction of myelotoxicity using a patient-specific imaging dose estimate for non-marrow-targeting y-antibody therapy. J Nucl Med. 2002; 43: 1245-1253.
  • 21
    Feller PA, Sodd VJ, Kereiakes JG. Using the S tables of MIRD Pamphlet 11. J Nucl Med. 1977; 18: 747.
  • 22
    Juweid M, Sharkey RM, Siegel JA, Behr T, Goldenberg DM. Estimates of red marrow dose by sacral scintigraphy in radioimmunotherapy patients having non-Hodgkin's lymphoma and diffuse bone marrow uptake. Cancer Res. 1995; 55: 5827s-5831s.
  • 23
    Siegel JA. Establishing a clinically meaningful predictive model of hematologic toxicity in nonmyeloablative targeted radiotherapy: practical aspects and limitations of red marrow dosimetry. Cancer Biother Radiopharm. 2005; 20: 126-140.
  • 24
    Lim SM, DeNardo GL, DeNardo DA, et al. Prediction of myelotoxicity using radiation doses to marrow from body, blood and marrow sources. J Nucl Med. 1997; 38: 1374-1378.
  • 25
    DeNardo DA, DeNardo GL, O'Donnell RT, et al. Imaging for improved prediction of myelotoxicity after radioimmunotherapy. Cancer. 1997; 80: 2558s-2566s.
  • 26
    Meredith RF, Shen S, Forero A, LoBuglio AF. A method to correct for radioactivity in large vessels that overlap the spine in imaging-based marrow dosimetry of lumbar vertebrae. J Nucl Med. 2008; 49: 279-284.
  • 27
    Liu A, Williams LE, Raubitschek AA. A CT assisted method for absolute quantitation of internal radioactivity. Med Phys. 1996; 23: 1919-1928.
  • 28
    Wessels BW, Konijnenberg MW, Dale RG, et al. MIRD pamphlet no. 20: The effect of model assumptions on kidney dosimetry and response–implications for radionuclide therapy. J Nucl Med. 2008; 49: 1884-1899.