SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Grier HE, Krailo MD, Tarbell NJ, et al. Addition of ifosfamide and etoposide to standard chemotherapy for Ewing's sarcoma and primitive neuroectodermal tumor of bone. N Engl J Med. 2003; 348: 694-701.
  • 2
    Womer RB, West DC, Krailo MD, Dickman P, Pawel B for the Children' Oncology Group AEWS0031 Committee. Randomized comparison of every-2-week v. every-3-week chemotherapy in Ewing sarcoma family tumors (ESFT) [abstract]. J Clin Oncol. 2008; 26( May 20 suppl). Abstract 10504.
  • 3
    Miser JS, Goldsby RE, Chen Z, et al. Treatment of metastatic Ewing sarcoma/primitive neuroectodermal tumor of bone: evaluation of increasing the dose intensity of chemotherapy—a report from the Children's Oncology Group. Pediatr Blood Cancer. 2007; 49: 894-900.
  • 4
    Miser JS, Krailo MD, Tarbell NJ, et al. Treatment of metastatic Ewing's sarcoma or primitive neuroectodermal tumor of bone: evaluation of combination ifosfamide and etoposide—a Children's Cancer Group and Pediatric Oncology Group study. J Clin Oncol. 2004; 22: 2873-2876.
  • 5
    Jurgens H, Ranft A, Dirksen U, et al. Risks of recurrence and survival after relapse in patients with Ewing tumor [abstract]. J Clin Oncol. 2007; 25( June 20 suppl): 18S. Abstract 10011.
  • 6
    Leavey PJ, Mascarenhas L, Marina N, et al. Prognostic factors for patients with Ewing sarcoma (EWS) at first recurrence following multi-modality therapy: a report from the Children's Oncology Group. Pediatr Blood Cancer. 2008; 51: 334-338.
  • 7
    Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000; 407: 249-257.
  • 8
    Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008; 358: 2039-2049.
  • 9
    van der Schaft DW, Hillen F, Pauwels P, et al. Tumor cell plasticity in Ewing sarcoma, an alternative circulatory system stimulated by hypoxia. Cancer Res. 2005; 65: 11520-11528.
  • 10
    Zhou Z, Reddy K, Guan H, Kleinerman ES. VEGF, but not VEGF, stimulates vasculogenesis and bone marrow cell migration into Ewing's sarcoma tumors in vivo. Mol Cancer Res. 2007; 5: 1125-1132.
  • 11
    Reddy K, Cao Y, Zhou Z, Yu L, Jia SF, Kleinerman ES. VEGF165 expression in the tumor microenvironment influences the differentiation of bone marrow-derived pericytes that contribute to the Ewing's sarcoma vasculature. Angiogenesis. 2008; 11: 257-267.
  • 12
    Reddy K, Zhou Z, Schadler K, Jia SF, Kleinerman ES. Bone marrow subsets differentiate into endothelial cells and pericytes contributing to Ewing's tumor vessels. Mol Cancer Res. 2008; 6: 929-936.
  • 13
    Lee TH, Bolontrade MF, Worth LL, Guan H, Ellis LM, Kleinerman ES. Production of VEGF165 by Ewing's sarcoma cells induces vasculogenesis and the incorporation of CD34+ stem cells into the expanding tumor vasculature. Int J Cancer. 2006; 119: 839-846.
  • 14
    Zhou Z, Bolontrade MF, Reddy K, et al. Suppression of Ewing's sarcoma tumor growth, tumor vessel formation, and vasculogenesis following anti vascular endothelial growth factor receptor-2 therapy. Clin Cancer Res. 2007; 13: 4867-4873.
  • 15
    Reddy K, Zhou Z, Jia SF, et al. Stromal cell-derived factor-1 stimulates vasculogenesis and enhances Ewing's sarcoma tumor growth in the absence of vascular endothelial growth factor. Int J Cancer. 2008; 123: 831-837.
  • 16
    Fuchs B, Inwards CY, Janknecht R. Vascular endothelial growth factor expression is up-regulated by EWS-ETS oncoproteins and Sp1 and may represent an independent predictor of survival in Ewing's sarcoma. Clin Cancer Res. 2004; 10: 1344-1353.
  • 17
    Strammiello R, Benini S, Manara MC, et al. Impact of IGF-I/IGF-IR circuit on the angiogenetic properties of Ewing's sarcoma cells. Horm Metab Res. 2003; 35: 675-684.
  • 18
    Manara MC, Landuzzi L, Nanni P, et al. Preclinical in vivo study of new insulin-like growth factor-I receptor-specific inhibitor in Ewing's sarcoma. Clin Cancer Res. 2007; 13: 1322-1330.
  • 19
    Potikyan G, Savene RO, Gaulden JM, et al. EWS/FLI1 regulates tumor angiogenesis in Ewing's sarcoma via suppression of thrombospondins. Cancer Res. 2007; 67: 6675-6684.
  • 20
    Benjamin LE, Hemo I, Keshet E. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development. 1998; 125: 1591-1598.
  • 21
    Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development. 1999; 126: 3047-3055.
  • 22
    Langley RR, Fan D, Tsan RZ, et al. Activation of the platelet-derived growth factor-receptor enhances survival of murine bone endothelial cells. Cancer Res. 2004; 64: 3727-3730.
  • 23
    Uren A, Merchant MS, Sun CJ, et al. Beta-platelet-derived growth factor receptor mediates motility and growth of Ewing's sarcoma cells. Oncogene. 2003; 22: 2334-2342.
  • 24
    Frischer JS, Huang J, Serur A, et al. Effects of potent VEGF blockade on experimental Wilms tumor and its persisting vasculature. Int J Oncol. 2004; 25: 549-553.
  • 25
    Simpson A, Grimer R, Mangham C, Cullinane C, Lewis I, Burchill S. MVD predicts disease-free and overall survival in tumours of the Ewing's sarcoma family (ESFT) [abstract]. Br J Cancer. 2002; 86( suppl 1): S95.
  • 26
    Kreuter M, Paulussen M, Boeckeler J, et al. Clinical significance of vascular endothelial growth factor-A expression in Ewing's sarcoma. Eur J Cancer. 2006; 42: 1904-1911.
  • 27
    Mikulic D, Ilic I, Cepulic M, et al. Angiogenesis and Ewing sarcoma—relationship to pulmonary metastasis and survival. J Pediatr Surg. 2006; 41: 524-529.
  • 28
    Holzer G, Obermair A, Koschat M, Preyer O, Kotz R, Trieb K. Concentration of vascular endothelial growth factor (VEGF) in the serum of patients with malignant bone tumors. Med Pediatr Oncol. 2001; 36: 601-604.
  • 29
    Pavlakovic H, Von Schutz V, Rossler J, Koscielniak E, Havers W, Schweigerer L. Quantification of angiogenesis stimulators in children with solid malignancies. Int J Cancer. 2001; 92: 756-760.
  • 30
    Tabone MD, Landman-Parker J, Arcil B, et al. Are basic fibroblast growth factor and vascular endothelial growth factor prognostic indicators in pediatric patients with malignant solid tumors? Clin Cancer Res. 2001; 7: 538-543.
  • 31
    Shaked Y, Bocci G, Munoz R, et al. Cellular and molecular surrogate markers to monitor targeted and non-targeted antiangiogenic drug activity and determine optimal biologic dose. Curr Cancer Drug Targets. 2005; 5: 551-559.
  • 32
    Guan H, Zhou Z, Wang H, Jia SF, Liu W, Kleinerman ES. A small interfering RNA targeting vascular endothelial growth factor inhibits Ewing's sarcoma growth in a xenograft mouse model. Clin Cancer Res. 2005; 11: 2662-2669.
  • 33
    Huang J, Frischer JS, Serur A, et al. Regression of established tumors and metastases by potent vascular endothelial growth factor blockade. Proc Natl Acad Sci U S A. 2003; 100: 7785-7790.
  • 34
    Dalal S, Berry AM, Cullinane CJ, et al. Vascular endothelial growth factor: a therapeutic target for tumors of the Ewing's sarcoma family. Clin Cancer Res. 2005; 11: 2364-2378.
  • 35
    Maris JM, Courtright J, Houghton PJ, et al. Initial testing of the VEGFR inhibitor AZD2171 by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer. 2008; 50: 581-587.
  • 36
    Maris JM, Courtright J, Houghton PJ, et al. Initial testing (stage 1) of sunitinib by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer. 2008; 51: 42-48.
  • 37
    Rennel E, Waine E, Guan H, et al. The endogenous anti-angiogenic VEGF isoform, VEGF165b inhibits human tumour growth in mice. Br J Cancer. 2008; 98: 1250-1257.
  • 38
    Dalal S, Burchill SA. Preclinical evaluation of vascular-disrupting agents in Ewing's sarcoma family of tumours. Eur J Cancer. 2009; 45: 713-722.
  • 39
    Glade-Bender JL, Adamson PC, Reid JM, et al. Phase I trial and pharmacokinetic study of bevacizumab in pediatric patients with refractory solid tumors: a Children's Oncology Group Study. J Clin Oncol. 2008; 26: 399-405.
  • 40
    Skubitz KM, Haddad PA. Combination of pegylated-liposomal doxorubicin (PLD) and bevacizumab (B) (PLD-B) in sarcoma (SAR) [abstract]. 2007 ASCO Annual Meeting Proceedings J Clin Oncol. 2007; 25( part I June 20 suppl, ): 18S. Abstract 20506.
  • 41
    Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med. 2001; 7: 987-989.
  • 42
    Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005; 307: 58-62.
  • 43
    DuBois SG, Shusterman S, Ingle AM, et al. A pediatric phase I trial and pharmacokinetic (PK) study of sunitinib: a Children's Oncology Group Phase I Consortium study [abstract]. J Clin Oncol. 2008; 26( May 20 suppl). Abstract 3561.
  • 44
    Widemann BC, Fox E, Adamson PC, et al. Phase I study of sorafenib in children with refractory solid tumors: a Children's Oncology Group Phase I Consortium trial [abstract]. J Clin Oncol. 2009; 27: 15S. Abstract 10012.
  • 45
    Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer. 2004; 4: 423-436.
  • 46
    Casanova M, Ferrari A, Bisogno G, et al. Vinorelbine and low-dose cyclophosphamide in the treatment of pediatric sarcomas: pilot study for the upcoming European Rhabdomyosarcoma Protocol. Cancer. 2004; 101: 1664-1671.
  • 47
    Kieran MW, Turner CD, Rubin JB, et al. A feasibility trial of antiangiogenic (metronomic) chemotherapy in pediatric patients with recurrent or progressive cancer. J Pediatr Hematol Oncol. 2005; 27: 573-581.
  • 48
    Stempak D, Gammon J, Halton J, Moghrabi A, Koren G, Baruchel S. A pilot pharmacokinetic and antiangiogenic biomarker study of celecoxib and low-dose metronomic vinblastine or cyclophosphamide in pediatric recurrent solid tumors. J Pediatr Hematol Oncol. 2006; 28: 720-728.
  • 49
    Olmos D, Okuno S, Schuetze S, et al. Safety, pharmacokinetics and preliminary activity of the anti-IGF-IR antibody CP-751,871 in patients with sarcoma. J Clin Oncol. 2008; 26: 10501.
  • 50
    Tolcher AW, Rothenberg ML, Rodon J, et al. A phase I pharmacokinetic and pharmacodynamic study of AMG 479, a fully human monoclonal antibody against insulin-like growth factor type 1 receptor (IGF-1R), in advanced solid tumors [abstract]. 2007 ASCO Annual Meeting Proceedings. J Clin Oncol. 2007; 25( part I June 20 suppl, ): 18S. Abstract 3002.
  • 51
    Guba M, von Breitenbuch P, Steinbauer M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med. 2002; 8: 128-135.
  • 52
    Mita MM, Mita AC, Chu QS, et al. Phase I trial of the novel mammalian target of rapamycin inhibitor deforolimus (AP23573; MK-8669) administered intravenously daily for 5 days every 2 weeks to patients with advanced malignancies. J Clin Oncol. 2008; 26: 361-367.
  • 53
    Chawla SP, Tolcher AW, Staddon AP, et al; AP23573 Sarcoma Study Group. Updated results of a phase II trial of AP23573, a novel mTOR inhibitor, in patients (pts) with advanced soft tissue or bone sarcomas [abstract]. 2006 ASCO Annual Meeting Proceedings. J Clin Oncol. 2006; 24( part I June 20 suppl, ): 18S. Abstract 9505.
  • 54
    Houghton PJ, Morton CL, Kolb EA, et al. Initial testing (stage 1) of the mTOR inhibitor rapamycin by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer. 2008; 50: 799-805.
  • 55
    Kolb EA, Gorlick R, Houghton PJ, et al. Initial testing (stage 1) of a monoclonal antibody (SCH 717454) against the IGF-1 receptor by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer. 2008; 50: 1190-1197.