SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Van Laere SJ, Van den Eynden GG, Van der Auwera I, et al. Identification of cell-of-origin breast tumor subtypes in inflammatory breast cancer by gene expression profiling. Breast Cancer Res Treat. 2006; 95: 234-255.
  • 2
    Dawood S, Ueno NT, Cristofanilli M. The medical treatment of inflammatory breast cancer. Semin Oncol. 2008; 35: 64-71.
  • 3
    Hance KW, Anderson WF, Devesa SS, Young HA, Levine PH. Trends in inflammatory breast carcinoma incidence and survival: the surveillance, epidemiology, and end results program at the National Cancer Institute. J Natl Cancer Inst. 2005; 97: 966-975.
  • 4
    Alpaugh ML, Tomlinson JS, Shao Z-M, Barsky SH. A novel human xenograft model of inflammatory breast cancer. Cancer Res. 1999; 59: 5079-5084.
  • 5
    Van der Auwera I, Van Laere S, Van den Eynden G, et al. Increased angiogenesis and lymphangiogenesis in inflammatory versus noninflammatory breast cancer by real-time reverse transcriptase-PCR gene expression quantification. Clin Cancer Res. 2004; 10: 7965-7971.
  • 6
    Shen R, Ye Y, Chen L, et al. Precancerous stem cells can serve as tumor vasculogenic progenitors. PLoS ONE. 2008; 3: e1652.
  • 7
    Sugino T, Kusakabe T, Hoshi N, et al. An invasion-independent pathway of blood-borne metastasis. A new murine mammary tumor model. Am J Pathol. 2002; 160: 1973-1980.
  • 8
    Kleer CG, van Golen KL, Braun T, Merajver SD. Persistent E-cadherin expression in inflammatory breast cancer. Mod Pathol. 2001; 14: 458-464.
  • 9
    Alpaugh ML, Tomlinson JS, Ye Y, Barsky SH. Relationship of Sialyl-Lewisx/a underexpression and E-cadherin overexpression in the lymphovascular embolus of inflammatory breast carcinoma. Am J Pathol. 2002; 161: 619-628.
  • 10
    Alpaugh ML, Tomlinson JS, Kasraeian S, Barsky SH. Cooperative role of E-cadherin and sialyl-Lewis X/A-deficient MUC1 in the passive dissemination of tumor emboli in inflammatory breast carcinoma. Oncogene. 2002; 21: 3631-3643.
  • 11
    Shirakawa K, Tsuda H, Heike Y, et al. Absence of endothelial cells, central necrosis, and fibrosis are associated with aggressive inflammatory breast cancer. Cancer Res. 2001; 61: 445-451.
  • 12
    Shirakawa K, Kobayashi H, Sobajima J, et al. Vasculogenic mimicry and its hemodynamics of an inflammatory breast cancer xenograft model. Breast Cancer Res. 2003; 5: 136-139.
  • 13
    Pena L, Perez-Alenza MD, Rodriguez-Bertos A, Nieto A. Canine inflammatory mammary carcinoma: histopathology, immunohistochemistry and clinical implications of 21 cases. Breast Cancer Res Treat. 2003; 78: 141-148.
  • 14
    Queiroga FL, Perez-Alenza MD, Silvan G, Pena L, Lopes C, Illera JC. Cox-2 levels in canine mammary tumors, including inflammatory mammary carcinoma: clinicopathological features and prognostic significance. Anticancer Res. 2005; 25: 4269-4275.
  • 15
    Clemente M, Pérez M, Illera J, Pena L. Histological, immunohistological and ultrastructural description of vasculogenic mimicry in cannine mammory cancer. Vet Pathol. In press.
  • 16
    Basu GD, Liang WS, Stephan DA, et al. A novel role for cyclooxygenase-2 in regulating vascular channel formation by human breast cancer cells. Breast Cancer Res. 2006; 8: R69.
  • 17
    McCarthy NJ, Yang X, Linnoila IR, et al. Microvessel density, expression of estrogen receptor alpha, MIB-1, p53, and c-erbB-2 in inflammatory breast cancer. Clin Cancer Res. 2002; 8: 3857-3862.
  • 18
    Colpaert C, Vermeulen P, Benoy I, et al. Inflammatory breast cancer shows angiogenesis with high endothelial proliferation rate and strong E-cadherin expression. Br J Cancer. 2003; 88: 718-725.
  • 19
    Van Laere S, Van der Auwera I, Van den Eynden G, et al. Distinct molecular phenotype of inflammatory breast cancer compared to non-inflammatory breast cancer using Affymetrix-based genome-wide gene-expression analysis. Br J Cancer. 2007; 97: 1165-1174.
  • 20
    Bertucci F, Finetti P, Rougemont J, et al. Gene expression profiling for molecular characterization of inflammatory breast cancer and prediction of response to chemotherapy. Cancer Res. 2004; 64: 8558-8565.
  • 21
    Bieche I, Lerebours F, Tozlu S, et al. Molecular profiling of inflammatory breast cancer: identification of a poor-prognosis gene expression signature. Clin Cancer Res. 2004; 10: 6789-6795.
  • 22
    Overmoyer B, Fu P, Hoppel C, et al. Inflammatory breast cancer as a model disease to study tumor angiogenesis: results of a phase 1B trial of combination SU5416 and doxorubicin. Clin Cancer Res. 2007; 13: 5862-5868.
  • 23
    Wedam SB, Low JA, Yang SX, et al. Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer. J Clin Oncol. 2006; 24: 769-777.
  • 24
    Yang SX, Steinberg SM, Nguyen D, Wu TD, Modrusan Z, Swain SM. Gene expression profile and angiogenic markers correlate with response to neoadjuvant bevacizumab followed by bevacizumab plus chemotherapy in breast cancer. Clin Cancer Res. 2008; 14: 5893-5899.
  • 25
    Van der Auwera I, Van den Eynden GG, Colpaert CG, et al. Tumor lymphangiogenesis in inflammatory breast carcinoma: a histomorphometric study. Clin Cancer Res. 2005; 11: 7637-7642.
  • 26
    Van Golen KL, Davies S, Wu ZF, et al. A novel putative low-affinity insulin-like growth factor-binding protein, LIBC (lost in inflammatory breast cancer), and RhoC GTPase correlate with the inflammatory breast cancer phenotype. Clin Cancer Res. 1999; 5: 2511-2519.
  • 27
    Van den Eynden GG, Van den Auwera I, Van Laere S, et al. Validation of a tissue microarray to study differential protein expression in inflammatory and non-inflammatory breast cancer. Breast Cancer Res Treat. 2004; 85: 13-22.
  • 28
    Tomlinson JS, Alpaugh ML, Barsky SH. An intact overexpressed E-cadherin/alpha, beta-catenin axis characterizes the lymphovascular emboli of inflammatory breast carcinoma. Cancer Res. 2001; 61: 5231-5241.
  • 29
    Charafe-Jauffret E, Tarpin C, Bardou VJ, et al. Immunophenotypic analysis of inflammatory breast cancers: identification of an “inflammatory signature”. J Pathol. 2004; 202: 265-273.
  • 30
    Xiao Y, Ye Y, Yearsley K, Jones S, Barsky SH. The lymphovascular embolus of inflammatory breast cancer expresses a stem cell-like phenotype. Am J Pathol. 2008; 173: 561-574.
  • 31
    MDA-IBC-1. Abstract. Paper presented at First International Inflammatory Breast Cancer Conference, Houston, Texas, December 5-7, 2008.
  • 32
    Van Laere S, Beinbarth T, Van den Auwera J, et al. Paper presented at First International Inflammatory Breast Cancer Conference, Houston, Texas, December 5-7. Clin Cancer Res. 2008; 14: 7452-7460.
  • 33
    Yang-WT, Le-Petross HT, Macapinlac H, et al. Inflammatory breast cancer: PET/CT, MRI, mammography, and sonographic findings. Breast Cancer Res Treat. 2008; 109: 417-426.
  • 34
    Farnie G, Clarke RB, Spence K, et al. Novel cell culture technique for primary ductal carcinoma in situ: role of Notch and epidermal growth factor receptor signaling pathways. J Natl Cancer Inst. 2007; 99: 616-627.
  • 35
    Götte M, Kersting C, Radke I, Kiesel L, Wülfing P. An expression signature of syndecan-1 (CD138), E-cadherin and c-met is associated with factors of angiogenesis and lymphangiogenesis in ductal breast carcinoma in situ. Breast Cancer Res. 2007; 9: R8.
  • 36
    Jeschke U, Mylonas I, Shabani N, et al. Expression of sialyl lewis X, sialyl Lewis A, E-cadherin and cathepsin-D in human breast cancer: immunohistochemical analysis in mammary carcinoma in situ, invasive carcinomas and their lymph node metastasis. Anticancer Res. 2005; 25: 1615-1622.
  • 37
    Boersma BJ, Reimers M, Yi M, et al. A stromal gene signature associated with inflammatory breast cancer. Int J Cancer. 2008; 122: 1324-1332.