SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Pui CH, Campana D, Pei D, et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med. 2009; 360: 2730-2741.
  • 2
    Moleski M. Neuropsychological, neuroanatomical, and neurophysiological consequences of CNS chemotherapy for acute lymphoblastic leukemia. Arch Clin Neuropsychol. 2000; 15: 603-630.
  • 3
    Mulhern RK, Butler RW. Neurocognitive sequelae of childhood cancers and their treatment. Pediatr Rehabil. 2004; 7: 1-14; discussion 15-16.
  • 4
    Rodgers J, Horrocks J, Britton PG, Kernahan J. Attentional ability among survivors of leukaemia. Arch Dis Child. 1999; 80: 318-323.
  • 5
    Brown RW, Madan-Swain A, Pais R, et al. Cognitive status of children treated with central nervous system prophylactic chemotherapy for acute lymphocytic leukemia. Arch Clin Neuropsychol. 1992; 7: 481-497.
  • 6
    Schatz J, Kramer JH, Ablin A, Matthay KK. Processing speed, working memory, and IQ: a developmental model of cognitive deficits following cranial radiation therapy. Neuropsychology. 2000; 14: 189-200.
  • 7
    Reddick WE, Shan ZY, Glass JO, et al. Smaller white-matter volumes are associated with larger deficits in attention and learning among long-term survivors of acute lymphoblastic leukemia. Cancer. 2006; 106: 941-949.
  • 8
    Huttenlocher PR. Synaptic density in human frontal cortex-developmental changes and effects of aging. Brain Res. 1979; 163: 195-205.
  • 9
    Casey BJ, Giedd JN, Thomas KM. Structural and functional brain development and its relation to cognitive development. Biol Psychol. 2000; 54: 241-257.
  • 10
    Giedd JN. The anatomy of mentalization: a view from developmental neuroimaging. Bull Menninger Clin. 2003; 67: 132-142.
  • 11
    Fry AS, Hale S. Processing speed, working memory, and fluid intelligence: evidence for a developmental cascade. Psychol Sci. 1996; 4: 237-241.
    Direct Link:
  • 12
    Wechsler D. Wechsler Intelligence Scale for Children. 3rd ed. San Antonio, TX: Psychological Corporation; 1991.
  • 13
    Wechsler D. Wechsler Adult Intelligence Scale. 3rd ed. San Antonio, TX: Psychological Corporation; 1997.
  • 14
    Lezak MD. Neuropsychological assessment. 3rd ed. New York: Oxford University Press; 1995.
  • 15
    Conklin HM, Curtis CE, Katsanis J, Iacono WG. Verbal working memory impairment in schizophrenia patients and their first-degree relatives: evidence from the digit span task. Am J Psychiatry. 2000; 157: 275-277.
  • 16
    Sattler JM. Assessment of children. 3rd ed. San Diego, CA: JM Sattler; 1992.
  • 17
    Reddick WE, Glass JO, Cook EN, Elkin TD, Deaton R. Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks. IEEE Trans Med Imaging. 1997; 16: 911-918.
  • 18
    Reddick WE, Glass JO, Langston JW, Helton KJ. Quantitative MRI assessment of leukoencephalopathy. Magn Reson Med. 2002; 47: 912-920.
  • 19
    Giralt J, Ortega JJ, Olive T, Verges R, Forio I, Salvador L. Long-term neuropsychologic sequelae of childhood leukemia: comparison of two CNS prophylactic regimens. Int J Radiat Oncol Biol Phys. 1992; 24: 49-53.
  • 20
    Ochs J, Mulhern R, Fairclough D, et al. Comparison of neuropsychologic functioning and clinical indicators of neurotoxicity in long-term survivors of childhood leukemia given cranial radiation or parenteral methotrexate: a prospective study. J Clin Oncol. 1991; 9: 145-151.
  • 21
    Reddick WE, White HA, Glass JO, et al. Developmental model relating white matter volume to neurocognitive deficits in pediatric brain tumor survivors. Cancer. 2004; 97: 2512-2519.
  • 22
    D'Esposito M, Aquirre GK, Zarahn E, Ballard D, Shin RK, Lease J. Functional MRI studies of spatial and nonspatial working memory. Brain Res Cogn Brain Res. 1998; 7: 1-13.
  • 23
    Smith EE, Jonides J. Working memory: a view from neuroimaging. Cogn Psychol. 1997; 33: 5-42.
  • 24
    Petrides M. Functional organization of the human frontal cortex for mnemonic processing. Evidence from neuroimaging studies. Ann N Y Acad Sci. 1995; 769: 85-96.
  • 25
    Petrides M, Pandya DN. Association pathways of the prefrontal cortex and functional observations. In: StussD, KnightRT, eds. Principles of Frontal Lobe Function. New York, NY: Oxford University Press; 2002: 31-50.
  • 26
    Reddick WE, Glass JO, Johnson DP, Laningham FH, Pui CH. Voxel-based analysis of T2 hyperintensities in white matter during treatment of childhood leukemia. AJNR Am J Neuroradiol. 2009; 30: 1947-1954.
  • 27
    Reddick WE, Glass JO, Helton KJ, et al. Prevalence of leukoenchepalopathy in children treated for acute lymphoblastic leukemia with high-dose methotrexate. AJNR Am J Neuroradiol. 2005; 26: 1263-69.
  • 28
    Reddick WE, Glass JO, Helton KJ, Langston JW, Li CS, Pui CH. A quantitative MR imaging assessment of leukoencephalopathy in children treated for acute lymphoblastic leukemia without irradiation. ANJR Am J Neuroradiol. 2005; 26: 2371-2377.
  • 29
    Conklin HM, Khan RB, Reddick WE, et al. Acute neurocognitive response to methylphenidate among survivors of childhood cancer: a randomized, double-blind, cross-over trial. J Pediatr Psychol. 2007; 32: 1127-1139.
  • 30
    Thompson SJ, Leigh L, Christensen R, et al. Immediate neurocognitive effects of methylphenidate on learning-impaired survivors of childhood cancer. J Clin Oncol. 2001; 19: 1802-1808.
  • 31
    Butler RW, Copeland DR, Fairclough DL, et al. A multicenter, randomized clinical trial of cognitive remediation program for childhood survivors of a pediatric malignancy. J Consult Clin Psychol. 2008; 76: 367-378.