• 1
    Waggoner SE. Cervical cancer. Lancet. 2003; 361: 2217-2225.
  • 2
    Duenas-Gonzalez A, Cetina-Perez L, Lopez-Graniel C, et al. Pathologic response and toxicity assessment of chemoradiotherapy with cisplatin versus cisplatin plus gemcitabine in cervical cancer: a randomized Phase II study. Int J Radiat Oncol Biol Phys. 2005; 61: 817-823.
  • 3
    Ohno T, Kato S, Tsujii H. Concurrent chemoradiotherapy for cervical cancer: a review of large randomized trials and perspectives for Asian countries. Austral Asia J Cancer. 2006; 5: 283-290.
  • 4
    Haie-Meder C, Fervers B, Fondrinier E, Haugh M, Lhomme C, Guastalla JP. SOR guidelines for concomitant chemoradiotherapy for patients with uterine cervical cancers: Evidence Update Bulletin 2004. Ann Oncol. 2005; 16: 1100-1108.
  • 5
    Peters WA 3rd, Liu PY, Barrett RJ 2nd, et al. Concurrent chemotherapy and pelvic radiation therapy compared with pelvic radiation therapy alone as adjuvant therapy after radical surgery in high-risk early stage cancer of the cervix. J Clin Oncol. 2000; 18: 1606-1613.
  • 6
    Rose PG, Bundy BN, Watkins EB, et al. Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N Engl J Med. 1999; 340: 1144-1153.
  • 7
    Eifel PJ, Winter K, Morris M, et al. Pelvic irradiation with concurrent chemotherapy versus pelvic and para-aortic irradiation for high-risk cervical cancer: an update of Radiation Therapy Oncology Group Trial (RTOG) 90-01. J Clin Oncol. 2004; 22: 872-880.
  • 8
    Iwakawa M, Ohno T, Imadome K, et al. The radiation-induced cell-death signaling pathway is activated by concurrent use of cisplatin in sequential biopsy specimens from patients with cervical cancer. Cancer Biol Ther. 2007; 6: 905-911.
  • 9
    Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000; 407: 249-257.
  • 10
    Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003; 3: 401-410.
  • 11
    Gorski DH, Beckett MA, Jaskowiak NT, et al. Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res. 1999; 59: 3374-3378.
  • 12
    Gupta VK, Jaskowiak NT, Beckett MA, et al. Vascular endothelial growth factor enhances endothelial cell survival and tumor radioresistance. Cancer J. 2002; 8: 47-54.
  • 13
    Kermani P, Leclerc G, Martel R, Fareh J. Effect of ionizing radiation on thymidine uptake, differentiation, and VEGFR2 receptor expression in endothelial cells: the role of VEGF. Int J Radiat Oncol Biol Phys. 2001; 50: 213-220.
  • 14
    Garcia-Barros M, Paris F, Cordon-Cardo C, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science. 2003; 300: 1155-1159.
  • 15
    Barclay C, Li AW, Geldenhuys L, et al. Basic fibroblast growth factor (FGF-2) overexpression is a risk factor for esophageal cancer recurrence and reduced survival, which is ameliorated by coexpression of the FGF-2 antisense gene. Clin Cancer Res. 2005; 11: 7683-7691.
  • 16
    Emoto N, Isozaki O, Ohmura E, et al. Basic fibroblast growth factor (FGF-2) in renal cell carcinoma, which is indistinguishable from that in normal kidney, is involved in renal cell carcinoma growth. J Urol. 1994; 152: 1626-1631.
  • 17
    Gold LI, Saxena B, Mittal KR, et al. Increased expression of transforming growth factor beta isoforms and basic fibroblast growth factor in complex hyperplasia and adenocarcinoma of the endometrium: evidence for paracrine and autocrine action. Cancer Res. 1994; 54: 2347-2358.
  • 18
    Di Blasio AM, Cremonesi L, Vigano P, et al. Basic fibroblast growth factor and its receptor messenger ribonucleic acids are expressed in human ovarian epithelial neoplasms. Am J Obstet Gynecol. 1993; 169: 1517-1523.
  • 19
    Fujimoto J, Ichigo S, Hori M, Hirose R, Sakaguchi H, Tamaya T. Expression of basic fibroblast growth factor and its mRNA in advanced uterine cervical cancers. Cancer Lett. 1997; 111: 21-26.
  • 20
    Massabeau C, Rouquette I, Lauwers-Cances V, et al. Basic fibroblast growth factor-2/beta3 integrin expression profile: signature of local progression after chemoradiotherapy for patients with locally advanced non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2009; 75: 696-702.
  • 21
    Soufla G, Sifakis S, Baritaki S, Zafiropoulos A, Koumantakis E, Spandidos DA. VEGF, FGF2, TGFB1 and TGFBR1 mRNA expression levels correlate with the malignant transformation of the uterine cervix. Cancer Lett. 2005; 221: 105-118.
  • 22
    Brieger J, Kattwinkel J, Berres M, Gosepath J, Mann WJ. Impact of vascular endothelial growth factor release on radiation resistance. Oncol Rep. 2007; 18: 1597-1601.
  • 23
    Tachiiri S, Katagiri T, Tsunoda T, Oya N, Hiraoka M, Nakamura Y. Analysis of gene-expression profiles after gamma irradiation of normal human fibroblasts. Int J Radiat Oncol Biol Phys. 2006; 64: 272-279.
  • 24
    Hase T, Kawashiri S, Tanaka A, et al. Correlation of basic fibroblast growth factor expression with the invasion and the prognosis of oral squamous cell carcinoma. J Oral Pathol Med. 2006; 35: 136-169.
  • 25
    Micke P, Ostman A. Tumour-stroma interaction: cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer. 2004; 45(suppl 2): S163-S175.
  • 26
    Kummel S, Heidecke H, Brock B, et al. Imatinib—a possible therapeutic option for cervical carcinoma: results of a preclinical phase I study [in German]. Gynakol Geburtshilfliche Rundsch. 2008; 48: 94-100.
  • 27
    Pietras K, Pahler J, Bergers G, Hanahan D. Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting. PLoS Med. 2008; 5: 123-138.
  • 28
    Nakawatari M, Iwakawa M, Ohno T, et al. Chemoradiation-induced expression of fibroblast growth factor-2 and laminin in patients with cervical cancer. Cancer Biol Ther. 2007; 6: 1780-1786.
  • 29
    Ohno T, Nakano T, Niibe Y, Tsujii H, Oka K. Bax protein expression correlates with radiation-induced apoptosis in radiation therapy for cervical carcinoma. Cancer. 1998; 83: 103-110.
  • 30
    Creasman WT. New gynecologic cancer staging. Gynecol Oncol. 1995; 58: 157-158.
  • 31
    Kaplan EL, Meier P. Nonparametric estimation for incomplete observations. J Am Stat Assoc. 1958; 53: 457-481.
  • 32
    Wood GS, Warnke R. Suppression of endogenous avidin-binding activity in tissues and its relevance to biotin-avidin detection systems. J Histochem Cytochem. 1981; 29: 1196-1204.
  • 33
    Wan F, Miao X, Quraishi I, Kennedy V, Creek KE, Pirisi L. Gene expression changes during HPV-mediated carcinogenesis: a comparison between an in vitro cell model and cervical cancer. Int J Cancer. 2008; 123: 32-40.
  • 34
    Zhang SC, Miyamoto S, Kamijo T, et al. Intratumor microvessel density in biopsy specimens predicts local response of hypopharyngeal cancer to radiotherapy. Jpn J Clin Oncol. 2003; 33: 613-619.
  • 35
    Imadome K, Iwakawa M, Nojiri K, et al. Up-regulation of stress-response genes with cell cycle arrest induced by carbon ion irradiation in multiple murine tumors models. Cancer Biol Ther. 2008; 7: 208-217.
  • 36
    Koike S, Ando K, Oohira C, et al. Relative biological effectiveness of 290 MeV/u carbon ions for the growth delay of a radioresistant murine fibrosarcoma. J Radiat Res (Tokyo). 2002; 43: 247-255.
  • 37
    Tamaki T, Iwakawa M, Ohno T, et al. Application of carbon-ion beams or gamma-rays on primary tumors does not change the expression profiles of metastatic tumors in an in vivo murine model. Int J Radiat Oncol Biol Phys. 2009; 74: 210-218.
  • 38
    Fisher RA. On the interpretation of χ2 from contingency tables, and the calculation of P. J R Stat Soc. 1922; 85: 87-94.
  • 39
    Kruskal WH, Wallis WA. Use of ranks in 1-criterion variance analysis. J Am Stat Assoc. 1952; 47: 583-621.
  • 40
    Wilcoxon F. Individual comparisons by ranking methods. Biometrics Bull. 1945; 1: 80-83.
  • 41
    Mann HB, Whitney DR. On a test of whether 1 of 2 random variables is stochastically larger than the other. Ann Math Stat. 1947; 18: 50-60.
  • 42
    Breslow N. A generalized Kruskal-Wallis test for comparing K samples subject to unequal patterns of censorship. Biometrika. 1970; 57: 579-594.
  • 43
    Haffty BG, Glazer PM. Molecular markers in clinical radiation oncology. Oncogene. 2003; 22: 5915-5925.
  • 44
    Nojiri K, Iwakawa M, Ichikawa Y, et al. The proangiogenic factor ephrin-A1 is up-regulated in radioresistant murine tumor by irradiation. Exp Biol Med. 2009; 234: 112-122.
  • 45
    Abdollahi A, Lipson KE, Han X, et al. SU5416 and SU6668 attenuate the angiogenic effects of radiation-induced tumor cell growth factor production and amplify the direct anti-endothelial action of radiation in vitro. Cancer Res. 2003; 63: 3755-3763.
  • 46
    Yamashita H, Murakami N, Asari T, Okuma K, Ohtomo K, Nakagawa K. Correlation among 6 biologic factors (p53, p21(WAF1), MIB-1, EGFR, HER2, and Bcl-2) and clinical outcomes after curative chemoradiation therapy in squamous cell cervical cancer. Int J Radiat Oncol Biol Phys. 2009; 74: 1165-1172.
  • 47
    Harima Y, Nagata K, Harima K, et al. Bax and Bcl-2 protein expression following radiation therapy versus radiation plus thermoradiotherapy in stage IIIB cervical carcinoma. Cancer. 2000; 88: 132-138.
  • 48
    Brieger J, Schroeder P, Gosepath J, Mann WJ. Vascular endothelial growth factor and basic fibroblast growth factor are released by squamous cell carcinoma cells after irradiation and increase resistance to subsequent irradiation. Int J Mol Med. 2005; 16: 159-164.
  • 49
    Costa ET, Forti FL, Matos TG, et al. Fibroblast growth factor 2 restrains Ras-driven proliferation of malignant cells by triggering RhoA-mediated senescence. Cancer Res. 2008; 68: 6215-6223.
  • 50
    Hast J, Schiffer IB, Neugebauer B, et al. Angiogenesis and fibroblast proliferation precede formation of recurrent tumors after radiation therapy in nude mice. Anticancer Res. 2002; 22: 677-688.
  • 51
    Mishra JP, Mishra S, Gee K, Kumar A. Differential involvement of calmodulin-dependent protein kinase II-activated AP-1 and c-Jun N-terminal kinase-activated EGR-1 signaling pathways in tumor necrosis factor-alpha and lipopolysaccharide-induced CD44 expression in human monocytic cells. J Biol Chem. 2005; 280: 26825-26837.
  • 52
    Biesiada E, Razandi M, Levin ER. Egr-1 activates basic fibroblast growth factor transcription. Mechanistic implications for astrocyte proliferation. J Biol Chem. 1996; 271: 18576-18581.
  • 53
    Wang D, Mayo MW, Baldwin ASJr. Basic fibroblast growth factor transcriptional autoregulation requires EGR-1. Oncogene. 1997; 14: 2291-2229.