SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Vale RD, Reese TS, Sheetz MP. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell. 1985; 42: 39-50.
  • 2
    Lawrence CJ, Dawe RK, Christie KR, et al. A standardized kinesin nomenclature. J Cell Biol. 2004; 167: 19-22.
  • 3
    Miki H, Setou M, Kaneshiro K, et al. All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci U S A. 2001; 98: 7004-7011.
  • 4
    Miki H, Okada Y, Hirokawa N. Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol. 2005; 15: 467-476.
  • 5
    Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science. 1998; 279: 519-526.
  • 6
    Zhu C, Zhao J, Bibikova M, et al. Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol Biol Cell. 2005; 16: 3187-3199.
  • 7
    Huszar D, Theoclitou ME, Skolnik J, et al. Kinesin motor proteins as targets for cancer therapy. Cancer Metastasis Rev. 2009; 28: 197-208.
  • 8
    Hirokawa N, Pfister KK, Yorifuji H, et al. Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration. Cell. 1989; 56: 867-878.
  • 9
    Diefenbach RJ, Mackay JP, Armati PJ, et al. The C-terminal region of the stalk domain of ubiquitous human kinesin heavy chain contains the binding site for kinesin light chain. Biochemistry. 1998; 37: 16663-166670.
  • 10
    Kanai Y, Dohmae N, Hirokawa N. Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron. 2004; 43: 513-525.
  • 11
    Hirokawa N, Noda Y, Tanaka Y, et al. Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol. 2009; 10: 682-696.
  • 12
    Goldstein LS, Philp AV. The road less traveled: emerging principles of kinesin motor utilization. Annu Rev Cell Dev Biol. 1999; 15: 141-183.
  • 13
    Lukong KE, Richard S. Breast tumor kinase BRK requires kinesin-2 subunit KAP3A in modulation of cell migration. Cell Signal. 2008; 20: 432-442.
  • 14
    Li L, Li XQ, Pan XH, Feng YM. Prognostic prediction by detection of KIF1B mRNA level in breast cancer and its clinical significance. Chin J Breast Dis. 2009; 3: 173-180.
  • 15
    Corson TW, Gallie BL. KIF14 mRNA expression is a predictor of grade and outcome in breast cancer. Int J Cancer. 2006; 119: 1088-1094.
  • 16
    Feng YM, Wan YF, Li XQ, et al. Expression and clinical significance of KNSL4 in breast cancer. Chin J Cancer. 2006; 25: 744-748.
  • 17
    Corson TW, Zhu CQ, Lau SK, et al. KIF14 messenger RNA expression is independently prognostic for outcome in lung cancer. Clin Cancer Res. 2007; 13: 3229-3234.
  • 18
    Taniwaki M, Takano A, Ishikawa N, et al. Activation of KIF4A as a prognostic biomarker and therapeutic target for lung cancer. Clin Cancer Res. 2007; 13( 22 pt 1): 6624-6631.
  • 19
    Schlisio S, Kenchappa RS, Vredeveld LC, et al. The kinesin KIF1Bbeta acts downstream from EglN3 to induce apoptosis and is a potential 1p36 tumor suppressor. Genes Dev. 2008; 22: 884-893.
  • 20
    Castillo A, Morse HC3rd, Godfrey VL, et al. Overexpression of Eg5 causes genomic instability and tumor formation in mice. Cancer Res. 2007; 67: 10138-10147.
  • 21
    Weaver BA, Silk AD, Montagna C, et al. Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell. 2007; 11: 25-36.
  • 22
    Cardoso CM, Groth-Pedersen L, Hoyer-Hansen M, et al. Depletion of kinesin 5B affects lysosomal distribution and stability and induces peri-nuclear accumulation of autophagosomes in cancer cells [serial online]. PLoS One. 2009; 4: e4424.
  • 23
    Shichijo S, Ito M, Azuma K, et al. A unique gene having homology with the kinesin family member 18A encodes a tumour-associated antigen recognised by cytotoxic T lymphocytes from HLA-A2+ colon cancer patients. Eur J Cancer. 2005; 41: 1323-1330.
  • 24
    Nakata T, Hirokawa N. Point mutation of adenosine triphosphate-binding motif generated rigor kinesin that selectively blocks anterograde lysosome membrane transport. Cell Biol. 1995; 131: 1039-1053.
  • 25
    Tanaka Y, Kanai Y, Okada Y, et al. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell. 1998; 93: 1147-1158.
  • 26
    Hakimi MA, Speicher DW, Shiekhattar R. The motor protein kinesin-1 links neurofibromin and merlin in a common cellular pathway of neurofibromatosis. J Biol Chem. 2002; 277: 36909-36912.
  • 27
    Dyrskjot L, Kruhoffer M, Thykjaer T, et al. Gene expression in the urinary bladder: a common carcinoma in situ gene expression signature exists disregarding histopathological classification. Cancer Res. 2004; 64: 4040-4048.
  • 28
    Hippo Y, Taniguchi H, Tsutsumi S, et al. Global gene expression analysis of gastric cancer by oligonucleotide microarrays. Cancer Res. 2002; 62: 233-240.
  • 29
    Nindl I, Dang C, Forschner T, et al. Identification of differentially expressed genes in cutaneous squamous cell carcinoma by microarray expression profiling [serial online]. Mol Cancer. 2006; 5: 30.
  • 30
    Richardson AL, Wang ZC, De Nicolo A, et al. X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell. 2006; 9: 121-132.
  • 31
    Mans DA, Lolkema MP, van Beest M, et al. Mobility of the von Hippel-Lindau tumour suppressor protein is regulated by kinesin-2. Exp Cell Res. 2008; 314: 1229-1236.
  • 32
    Kaelin WGJr. The von Hippel-Lindau protein, HIF hydroxylation, and oxygen sensing. Biochem Biophys Res Commun. 2005; 338: 627-638.
  • 33
    Staller P, Sulitkova J, Lisztwan J, et al. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature. 2003; 425: 307-311.
  • 34
    Yamazaki H, Nakata T, Okada Y, et al. Cloning and characterization of KAP3: a novel kinesin superfamily-associated protein of KIF3A/3B. Proc Natl Acad Sci U S A. 1996; 93: 8443-8448.
  • 35
    Haraguchi K, Hayashi T, Jimbo T, et al. Role of the kinesin-2 family protein, KIF3, during mitosis. J Biol Chem. 2006; 281: 4094-4099.
  • 36
    Zhang T, Otevrel T, Gao Z, et al. Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Res. 2001; 61: 8664-8667.
  • 37
    Cheadle JP, Krawczak M, Thomas MW, et al. Different combinations of biallelic APC mutation confer different growth advantages in colorectal tumours. Cancer Res. 2002; 62: 363-366.
  • 38
    Jimbo T, Kawasaki Y, Koyama R, et al. Identification of a link between the tumour suppressor APC and the kinesin superfamily. Nat Cell Biol. 2002; 4: 323-327.
  • 39
    Teng J, Rai T, Tanaka Y, et al. The KIF3 motor transports N-cadherin and organizes the developing neuroepithelium. Nat Cell Biol. 2005; 47: 474-482.
  • 40
    Nangaku M, Sato-Yoshitake R, Okada Y, et al. KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell. 1994; 79: 1209-1220.
  • 41
    Matsushita M, Tanaka S, Nakamura N, Inoue H, Kanazawa H. A novel kinesin-like protein, KIF1Bbeta3 is involved in the movement of lysosomes to the cell periphery in non-neuronal cells. Traffic. 2004; 5: 140-151.
  • 42
    Yeh IT, Lenci RE, Qin Y, et al. A germline mutation of the KIF1B beta gene on 1p36 in a family with neural and nonneural tumors. Hum Genet. 2008; 124: 279-285.
  • 43
    Bagchi A, Papazoglu C, Wu Y, et al. CHD5 is a tumor suppressor at human 1p36. Cell. 2007; 128: 459-475.
  • 44
    Zhao C, Takita J, Tanaka T, et al. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell. 2001; 105: 587-587.
  • 45
    Carleton M, Mao M, Biery M, et al. RNA interference-mediated silencing of mitotic kinesin KIF14 disrupts cell cycle progression and induces cytokinesis failure. Mol Cell Biol. 2006; 26: 3853-3863.
  • 46
    Gruneberg U, Neef R, Li X, et al. KIF14 and citron kinase act together to promote efficient cytokinesis. J Cell Biol. 2006; 172: 363-372.
  • 47
    Corson TW, Huang A, Tsao MS, et al. KIF14 is a candidate oncogene in the 1q minimal region of genomic gain in multiple cancers. Oncogene. 2005; 24: 4741-4753.
  • 48
    Mazumdar M, Sundareshan S, Misteli T. Human chromokinesin KIF4A functions in chromosome condensation and segregation. J Cell Biol. 2004; 166: 613-620.
  • 49
    Narayan G, Bourdon V, Chaganti S, et al. Gene dosage alterations revealed by cDNA microarray analysis in cervical cancer: identification of candidate amplified and overexpressed genes. Genes Chromosomes Cancer. 2007; 46: 373-384.
  • 50
    Mazumdar M, Lee JH, Sengupta K, et al. Tumor formation via loss of a molecular motor protein. Curr Biol. 2006; 16: 1559-1564.
  • 51
    Cheung HO, Zhang X, Ribeiro A, et al. Briscoe J, Hui CC. The kinesin protein Kif7 is a critical regulator of Gli transcription factors in mammalian hedgehog signaling [serial online]. Sci Signal. 2009; 2: ra29.
  • 52
    Feng YH, Zhu YF, Sun WJ. Hedghog signaling pathway and the occurrence of tumor. Cancer Res Prev Treat. 2005; 32: 796-799.
  • 53
    Tremblay MR, Lescarbeau A, Grogan MJ, et al. Discovery of a potent and orally active hedgehog pathway antagonist. J Med Chem. 2009; 52: 4400-4418.
  • 54
    Sarangi A, Valadez JG, Rush S, et al. Targeted inhibition of the hedgehog pathway in established malignant glioma xenografts enhances survival. Oncogene. 2009; 28: 3468-3476.
  • 55
    Le Guellec R, Paris J, Couturier A, et al. Cloning by differential screening of a Xenopus cDNA that encodes a kinesin-related protein. Mol Cell Biol. 1991; 11: 3395-3398.
  • 56
    Liu M, Yu H, Huo L, et al. Validating the mitotic kinesin Eg5 as a therapeutic target in pancreatic cancer cells and tumor xenografts using a specific inhibitor. Biochem Pharmacol. 2008; 76: 169-178.
  • 57
    Liu M, Aneja R, Liu C, et al. Inhibition of the mitotic kinesin Eg5 up-regulates Hsp70 through the phosphatidylinositol 3-kinase/Akt pathway in multiple myeloma cells. J Biol Chem. 2006; 281: 18090-18097.
  • 58
    Saijo T, Ishii G, Ochiai A, et al. Eg5 expression is closely correlated with the response of advanced non-small cell lung cancer to antimitotic agents combined with platinum chemotherapy. Lung Cancer. 2006; 54: 217-225.
  • 59
    Chen WW, Zhao J, Zhu CJ. Functional analysis of human kinesin in cytokinesis using esiRNA2-mediated RNAi. Chin J Biochem Molec Biol. 2005; 21: 554-560.
  • 60
    Cesario JM, Jang JK, Redding B, et al. Kinesin 6 family member Subito participates in mitotic spindle assembly and interacts with mitotic regulators. J Cell Sci. 2006; 119( pt 22): 4770-4780.
  • 61
    Wonsey DR, Follettie MT. Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe. Cancer Res. 2005; 65: 5181-5189.
  • 62
    Teh MT, Wong ST, Neill GW, et al. FOXM1 is a downstream target of Gli1 in basal cell carcinomas. Cancer Res. 2002; 62: 4773-4780.
  • 63
    Okabe H, Satoh S, Kato T, et al. Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression. Cancer Res. 2001; 61: 2129-2137.
  • 64
    Taniuchi K, Nakagawa H, Nakamura T, et al. Down-regulation of RAB6KIFL/KIF20A, a kinesin involved with membrane trafficking of discs large homologue 5, can attenuate growth of pancreatic cancer cell. Cancer Res. 2005; 65: 105-112.
  • 65
    Wood KW, Sakowicz R, Goldstein LS, et al. CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell. 1997; 91: 357-366.
  • 66
    Kapoor TM, Lampson MA, Hergert P, et al. Chromosomes can congress to the metaphase plate before biorientation. Science. 2006; 311: 388-391.
  • 67
    Schaar BT, Chan GK, Maddox P, et al. CENP-E function at kinetochores is essential for chromosome alignment. J Cell Biol. 1997; 139: 1373-1382.
  • 68
    Yao X, Abrieu A, Zheng Y, et al. CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nat Cell Biol. 2000; 2: 484-491.
  • 69
    Mao Y, Abrieu A, Cleveland DW. Activating and silencing the mitotic checkpoint through CENP-E-dependent activation/inactivation of BubR1. Cell. 2003; 114: 87-98.
  • 70
    Weaver BA, Bonday ZQ, Putkey FR, et al. Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. J Cell Biol. 2003; 162: 551-563.
  • 71
    McEwen BF, Chan GK, Zubrowski B, et al. CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells. Mol Biol Cell. 2001; 12: 2776-2789.
  • 72
    Chua PR, Desai R, Schauer SP, et al. Differential response of tumor cell lines to inhibition of the mitotic checkpoint regulator and mitotic kinesin, CENP-E [abstract]. Paper presented at: American Association for Cancer Research-National Cancer Institute-European Organization for Research and Treatment of Cancer International Conference: Molecular Targets and Cancer Therapeutics; Oct. 22-26, 2007; San Francisco, Calif. Abstract 114.
  • 73
    Sutton D, Gilmartin AG, Kusnierz AM, et al. A potent and selective inhibitor of the mitotic kinesin CENP-E (GSK923295A) demonstrates a novel mechanism of inhibiting tumor cell proliferation and shows activity against a broad panel of human tumor cell lines in vitro [abstract]. Paper presented at: American Association for Cancer Research-National Cancer Institute-European Organization for Research and Treatment of Cancer International Conference: Molecular Targets and Cancer Therapeutics; Oct. 22-26, 2007; San Francisco, Calif. Abstract A111.
  • 74
    Sutton D, Diamond M, Faucette L, et al. GSK-923295, a potent and selective CENP-E inhibitor, has broad spectrum activity against human tumor xenografts in nude mice [abstract]. Paper presented at: 98th American Association for Cancer Research Annual Meeting; April 14-18, 2007; Los Angeles, Calif. Abstract 1522.
  • 75
    Schafer-Hales K, Iaconelli J, Snyder JP, et al. Farnesyl transferase inhibitors impair chromosomal maintenance in cell lines and human tumors by compromising CENP-E and CENP-F function. Mol Cancer Ther. 2007; 6: 1317-1328.
  • 76
    Ashar HR, James L, Gray K, et al. Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules. J Biol Chem. 2000; 275: 30451-30457.
  • 77
    Jallepalli PV, Lengauer C. Chromosome segregation and cancer: cutting through the mystery. Nat Rev Cancer. 2001; 1: 109-117.
  • 78
    Liu Z, Ling K, Wu X, et al. Reduced expression of CENP-E in human hepatocellular carcinoma. J Exp Clin Cancer Res. 2009; 28: 156.
  • 79
    Stumpff J, von Dassow G, Wagenbach M, et al. The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Dev Cell. 2008; 14: 252-262.
  • 80
    Mayr MI, Hummer S, Bormann J, et al. The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Curr Biol. 2007; 17: 488-498.
  • 81
    Zusev M, Benayahu D. The regulation of MS-KIF18A expression and cross talk with estrogen receptor [serial online]. PLoS One. 2009; 4: e6407.
  • 82
    Levesque AA, Compton DA. The chromokinesin Kid is necessary for chromosome am orientation and oscillation, but not congression, on mitotic spindles. J Cell Biol. 2001; 154: 1135-1146.
  • 83
    Yajima J, Edamatsu M, Watai-Nishii J, et al. The human chromokinesin Kid is a plus end-directed microtubule-based motor. EMBO J. 2003; 22: 1067-1074.
  • 84
    Tokai N, Fujimoto-Nishiyama A, Toyoshima Y, et al. Kid, a novel kinesin-like DNA binding protein, is localized to chromosomes and the mitotic spindle. EMBO J. 1996; 15: 457-467.
  • 85
    Tahara K, Takagi M, Ohsugi M, et al. Importin-beta and the small guanosine triphosphatase Ran mediate chromosome loading of the human chromokinesin Kid. J Cell Biol. 2008; 180: 493-506.
  • 86
    Bruzzoni-Giovanelli H, Fernandez P, Veiga L, et al. Distinct expression patterns of the E3 ligase SIAH-1 and its partner Kid/KIF22 in normal tissues and in the breast tumoral processes. J Exp Clin Cancer Res. 2010; 29: 10.
  • 87
    Desai A, Verma S, Mitchison TJ, et al. Kin I kinesins are microtubule-destabilizing enzymes. Cell. 1999; 96: 69-78.
  • 88
    Nakamura Y, Tanaka F, Haraguchi N, et al. Clinicopathological and biological significance of mitotic centromere-associated kinesin overexpression in human gastric cancer. Br J Cancer. 2007; 97: 543-549.
  • 89
    Ishikawa K, Kamohara Y, Tanaka F, et al. Mitotic centromere-associated kinesin is a novel marker for prognosis and lymph node metastasis in colorectal cancer. Br J Cancer. 2008; 98: 1824-1829.
  • 90
    Shimo A, Tanikawa C, Nishidate T, et al. Involvement of kinesin family member 2C/mitotic centromere-associated kinesin overexpression in mammary carcinogenesis. Cancer Sci. 2008; 99: 62-70.
  • 91
    Scanlan MJ, Welt S, Gordon CM, et al. Cancer-related serological recognition of human colon cancer: identification of potential diagnostic and immunotherapeutic targets. Cancer Res. 2002; 62: 4041-4047.
  • 92
    Cai S, Weaver LN, Ems-McClung SC, et al. Kinesin-14 family proteins HSET/XCTK2 control spindle length by cross-linking and sliding microtubules. Mol Biol Cell. 2009; 20: 1348-1359.
  • 93
    Kwon M, Godinho SA, Chandhok NS, et al. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev. 2008; 22: 2189-2203.
  • 94
    De S, Cipriano R, Jackson MW, et al. Overexpression of kinesins mediates docetaxel resistance in breast cancer cells. Cancer Res. 2009; 69: 8035-8042.
  • 95
    Seguin L, Liot C, Mzali R, et al. CUX1 and E2F1 regulate coordinated expression of the mitotic complex genes Ect2, MgcRacGAP, and MKLP1 in S phase. Mol Cell Biol. 2009; 29: 570-581.
  • 96
    Jun DY, Park HS, Lee JY, et al. Regulation of the human mitotic centromere-associated kinesin (MCAK) promoter by the transcription factors Sp1 and E2F1. Biochim Biophys Acta. 2008; 1779: 355-361.
  • 97
    Morfini G, Pigino G, Szebenyi G, et al. JNK mediates pathogenic effects of polyglutamine-expanded androgen receptor on fast axonal transport. Nat Neurosci. 2006; 9: 907-916.
  • 98
    Ohsugi M, Tokai-Nishizumi N, Shiroguchil K, et al. Cdc2-mediated phosphorylation of Kid controls its distribution to spindle and chromosomes. EMBO J. 2003; 22: 2091-2103.
  • 99
    Lan W, Zhang X, Kline-Smith SL, et al. Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr Biol. 2004; 14: 273-286.
  • 100
    Feine O, Zur A, Mahbubani H, et al. Human Kid is degraded by the APC/C(Cdh1) but not by the APC/C(Cdc20). Cell Cycle. 2007; 6: 2516-2523.
  • 101
    Zusev M, Benayahu D. New insights on cellular distribution, microtubule interactions and post-translational modifications of MS-KIF18A. J Cell Physiol. 2008; 217: 618-625.
  • 102
    Liu M, Aneja R, Sun X, et al. Parkin regulates Eg5 expression by Hsp70 ubiquitination-dependent inactivation of c-Jun NH2-terminal kinase. J Biol Chem. 2008; 283: 35783-35788.