SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Levine RL, Gilliland DG. Myeloproliferative disorders. Blood. 2008; 112: 2190-2198.
  • 2
    Tefferi A, Vardiman JW. Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia. 2008; 22: 14-22.
  • 3
    Dameshek W. Some speculations on the myeloproliferative syndromes. Blood. 1951; 6: 372-375.
  • 4
    Shih LY, Lee CT. Identification of masked polycythemia vera from patients with idiopathic marked thrombocytosis by endogenous erythroid colony assay. Blood. 1994; 83: 744-748.
  • 5
    Cervantes F, Alvarez-Larran A, Talarn C, et al. Myelofibrosis with myeloid metaplasia following essential thrombocythaemia: actuarial probability, presenting characteristics and evolution in a series of 195 patients. Br J Haematol. 2002; 118: 786-790.
  • 6
    Bouroncle BA, Doan CA. Myelofibrosis. Clinical, hematologic and pathologic study of 110 patients. Am J Med Sci. 1962; 243 697-715.
  • 7
    Pitcock JA, Reinhard EH, Justus BW, et al. A clinical and pathological study of seventy cases of myelofibrosis. Ann Intern Med. 1962; 57: 73-84.
  • 8
    Spivak JL, Silver RT. The revised World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: an alternative proposal. Blood. 2008; 112: 231-239.
  • 9
    Messinezy M, Westwood NB, El-Hemaidi I, et al. Serum erythropoietin values in erythrocytoses and in primary thrombocythaemia. Br J Haematol. 2002; 117: 47-53.
  • 10
    Ellis JT, Peterson P, Geller SA, et al. Studies of the bone marrow in polycythemia vera and the evolution of myelofibrosis and second hematologic malignancies. Semin Hematol. 1986; 23: 144-155.
  • 11
    Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005; 7: 387-397.
  • 12
    James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signaling causes polycythemia vera. Nature. 2005; 434: 1144-1148.
  • 13
    Baxter E, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005; 365: 1054-1061.
  • 14
    Kralovics R, Passamonti F, Buser AS, et al. A gain of function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005; 352: 1779-1790.
  • 15
    Zhao R, Xing S, Li Z, et al. Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem. 2005; 280: 22788-22792.
  • 16
    Campbell PJ, Scott LM, Buck G, et al. Definition of subtypes of essential thrombocythaemia and relation to polycythaemia vera based on JAK2 V617F mutation status: a prospective study. Lancet. 2005; 366: 1945-1953.
  • 17
    Cassinat B, Laguillier C, Gardin C, et al. Classification of myeloproliferative disorders in the JAK2 era: is there a role for red cell mass? Leukemia. 2008; 22: 452-453.
  • 18
    Campbell PJ, Green AR. The myeloproliferative disorders. N Engl J Med. 2006; 355: 2452-2466.
  • 19
    Wilkins BS, Erber WN, Bareford D, et al. Bone marrow pathology in essential thrombocythemia: interobserver reliability and utility for identifying disease subtypes. Blood. 2008; 111: 60-70.
  • 20
    Moliterno AR, Williams DM, Rogers O, et al. Molecular mimicry in the chronic myeloproliferative disorders: reciprocity between quantitative JAK2 V617F and Mpl expression. Blood. 2006; 108: 3913-3915.
  • 21
    Moliterno AR, Williams DM, Rogers O, Isaacs MA, Spivak JL. Phenotypic variability within the JAK2 V617F-positive MPD: roles of progenitor cell and neutrophil allele burdens. Exp Hematol. 2008; 36: 1480-1486.
  • 22
    Kralovics R. Genetic complexity of myeloproliferative neoplasms. Leukemia. 2008; 22: 1841-1848.
  • 23
    Vannucchi AM, Antonioli E, Guglielmelli P, et al. Clinical profile of homozygous JAK2 617V>F mutation in patients with polycythemia vera or essential thrombocythemia. Blood. 2007; 110: 840-846.
  • 24
    Parganas E, Wang D, Stravopodis D, et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell. 1998; 93: 385-395.
  • 25
    Kralovics R, Stockton DW, Prchal JT. Clonal hematopoiesis in familial polycythemia vera suggests the involvement of multiple mutational events in the early pathogenesis of the disease. Blood. 2003; 102: 3793-3796.
  • 26
    Rumi E, Passamonti F, Della Porta MG, et al. Familial chronic myeloproliferative disorders: clinical phenotype and evidence of disease anticipation. J Clin Oncol. 2007; 25: 5630-5635.
  • 27
    Bellanne-Chantelot C, Chaumarel I, Labopin M, et al. Genetic and clinical implications of the Val617Phe JAK2 mutation in 72 families with myeloproliferative disorders. Blood. 2006; 108: 346-352.
  • 28
    Steensma DP, Dewald GW, Lasho TL, et al. The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both “atypical” myeloproliferative disorders and the myelodysplastic syndromes. Blood. 2005; 106: 1207-1209.
  • 29
    Lu X, Levine R, Tong W, et al. Expression of a homodimeric type I cytokine receptor is required for JAK2V617F mediated transformation. Proc Natl Acad Sci USA. 2005; 102: 18962-18967.
  • 30
    Zaleskas VM, Krause DS, Lazarides K, et al. Molecular pathogenesis and therapy of polycythemia induced in mice by JAK2 V617F. PLoS One. 2006; 1: e18.
  • 31
    Aaronson DS, Horvath CM. A road map for those who don't know JAK-STAT. Science. 2002; 296: 1653-1655.
  • 32
    Theocharides A, Boissinot M, Girodon F, et al. Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation. Blood. 2007; 110: 375-379.
  • 33
    Garcon L, Rivat C, James C, et al. Constitutive activation of STAT5 and Bcl-xL overexpression can induce endogenous erythroid colony formation in human primary cells. Blood. 2006; 108: 1551-1554.
  • 34
    Scott LM, Tong W, Levine RL, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007; 356: 459-468.
  • 35
    Pietra D, Li S, Brisci A, et al. Somatic mutations of JAK2 exon 12 in patients with JAK2(V617F) negative myeloproliferative disorders. Blood. 2008; 111: 1696-1699.
  • 36
    Pardanani AD, Levine RL, Lasho T, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood. 2006; 108: 3472-3476.
  • 37
    Pikman Y, Lee BH, Mercher T, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLos Med. 2006; 3: e270.
  • 38
    Chaligne R, James C, Tonetti C, et al. Evidence for MPLW515L/K mutations in hematopoietic stem cells in primitive myelofibrosis. Blood. 2007; 110: 3735-3743.
  • 39
    Di Nisio M, Barbui T, Di Gennaro L, et al. The haematocrit and platelet target in polycythemia vera. Br J Haematol. 2007; 36: 249-259.
  • 40
    Gordeuk VR, Prchal JT. Vascular complications in Chuvash polycythemia. Semin Thromb Hemost. 2006; 32: 289-294.
  • 41
    Najean Y, Rain JD. Treatment of polycythemia vera: the use of hydroxyurea and pipobroman in 292 patients under the age of 65 years. Blood. 1997; 90: 3370-3377.
  • 42
    Cortelazzo S, Finazzi G, Ruggeri M, et al. Hydroxyurea for patients with essential thrombocythemia and a high risk of thrombosis. N Engl J Med. 1995; 332: 1132-1136.
  • 43
    Squizzato A, Romualdi E, Middeldorp S. Antiplatelet drugs for polycythaemia vera and essential thrombocythaemia. Cochrane Database Syst Rev. 2008; 16: 1-15.
  • 44
    Harrison CN, Campbell PJ, Buck G, et al. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med. 2005; 353: 33-45.
  • 45
    Zhan H, Spivak JL. The diagnosis and management of polycythemia vera, essential thrombocythemia, and primary myelofibrosis in the JAK2 V617F era. Clin Adv Hematol Oncol. 2009; 7: 334-342.
  • 46
    Barbui T, Barosi G, Grossi A, et al. Practice guidelines for the therapy of essential thrombocythemia. A statement from the Italian Society of Hematology, the Italian society of Experimental Hematology and the Italian Group for Bone Marrow Transplantation. Hematologica. 2004; 89: 215-232.
  • 47
    Bacigalupo A, Soraru M, Dominietto A, et al. Allogeneic hemopoietic SCT for patients with primary myelofibrosis: a predictive transplant score based on transfusion requirement, spleen size and donor type. Bone Marrow Transplant. 2010; 45: 458-463.
  • 48
    Stewart WA, Pearce R, Kirkland KE, et al. The role of allogeneic SCT in primary myelofibrosis: a British Society for Blood and Marrow Transplantation study. Bone Marrow Transplant. 2010 Feb 15. [Epub ahead of print].
  • 49
    Kroger N, Holler E, Kobbe G, et al. Allogeneic stem cell transplantation after reduced-intensity conditioning in patients with myelofibrosis: a prospective, multicenter study of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Blood. 2009; 114: 5264-5270.
  • 50
    Kroger N, Mesa RA. Choosing between stem cell therapy and drugs in myelofibrosis. Leukemia. 2008; 22: 474-486.
  • 51
    Yamaoka K, Saharinen P, Pesu M, et al. The Janus kinases (Jaks). Genome Biol. 2004; 5: 253.
  • 52
    Vainchenker W, Dusa A, Constantinescu SN. JAKs in pathology: role of Janus kinases in hematopoietic malignancies and immunodeficiencies. Semin Cell Dev Biol. 2008; 19: 385-393.
  • 53
    Harpur AG, Andres AC, Ziemiecki A, et al. JAK2, a third member of the JAK family of protein tyrosine kinases. Oncogene. 1992; 7: 1347-1353.
  • 54
    Saharinen P, Silvennoinen O. The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J Biol Chem. 2002; 277: 47954-47963.
  • 55
    Quintas-Cardama A, Vaddi K, Liu P, et al. Preclinical characterization of the selective JAK 1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood. 2010; 115: 3109-3107.
  • 56
    Verstovsek S, Kantarjian HM, Mesa RA, et al. Long-term follow-up and optimized dosing regimen of INCB018424 in patients with myelofibrosis: durable clinical, functional and symptomatic responses with improved hematological safety [abstract]. ASH Annual Meeting Abstracts. Blood 2009; 114. Abstract 756.
  • 57
    Tefferi A, Kantarjian HM, Pardanani AD, et al. The clinical phenotype of myelofibrosis encompasses a chronic inflammatory state that is favorably altered by INCB018424, a selective inhibitor of JAK1/2 [abstract]. ASH Annual Meeting Abstracts. Blood. 2008; 112:Page. Abstract 2804.
  • 58
    Mesa RA, Kantarjian HM, Tefferi A, et al. Validation of the serial use of the myelofibrosis symptom assessment form (MF-SAF) for measuring symptomatic improvement: performance in 86 myelofibrosis patients on INCB018424 clinical trial [abstract]. ASH Annual Meeting Abstracts. Blood. 2009; 114:Page. Abstract 3917.
  • 59
    Verstovsek S, Kantarjian HM, Pardanani AD, et al. Characterization of JAK2 V617F allele burden in advanced myelofibrosis (MF) patients: no change in V617F:WT JAK2 ratio in patients with high allele burdens despite profound clinical improvement following treatment with JAK inhibitor, INCB018424 [abstract]. ASH Annual Meeting Abstracts. Blood. 2008; 112:Page. Abstract 2802.
  • 60
    Verstovsek S, Passamonti F, Rambaldi A, et al. A phase 2 study of INCB018424, an oral, selective JAK1/JAK2 inhibitor, in patients with advanced polycythemia vera and essential thrombocythemia refractory to hydroxyurea [abstract]. ASH Annual Meeting Abstracts. Blood. 2009; 114:Page. Abstract 311.
  • 61
    Wernig G, Kharas MG, Okabe R, et al. Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F induced polycythemia vera. Cancer Cell. 2008; 13: 311-320.
  • 62
    Pardanani AD, Gotlib J, Jamieson C, et al. A phase I study of TG101348, a selective JAK2 inhibitor, in myelofibrosis: clinical response is accompanied by significant reduction in JAK2V617F allele burden [abstract]. ASH Annual Meeting Abstracts. Blood. 2009; 114:Page. Abstract 755.
  • 63
    Paquette R, Sokal L, Shah NP, et al. A phase I study of XL019, a selective JAK2 inhibitor, in patients with polycythemia vera [abstract]. ASH Annual Meeting Abstracts. Blood. 2008; 112:Page. Abstract 2810.
  • 64
    Shah NP, Olszynski P, Sokal L, et al. A phase I study of XL019, a selective JAK2 inhibitor, in patients with primary myelofibrosis, post-polycythemia vera, or post-essential thrombocythemia myelofibrosis [abstract]. ASH Annual Meeting Abstracts. Blood. 2008; 112:Page. Abstract 98.
  • 65
    Atallah E, Verstovsek S. Prospect of JAK2 inhibitor therapy in myeloproliferative neoplasms. Expert Rev Anticancer Ther. 2009; 9: 663-670.
  • 66
    Levis M, Smith BD, Beran M, et al. A randomized open label study of lestaurtinib (CEP-701), an oral FLT3 inhibitor, administered in sequence with chemotherapy in patients with relapsed AML harboring FLT3 activating mutations: clinical response correlates with successful FLT3 inhibition [abstract]. ASH Annual Meeting Abstracts. Blood. 2005; 106:Page. Abstract 403.
  • 67
    Hexner E, Serdikoff C, Jan M, et al. Lestaurtinib (CEP-701) is a JAK2 inhibitor that suppresses JAK2/STAT5 signaling and the proliferation of primary erythroid cells from patients with myeloproliferative disorders. Blood. 2008; 111: 5663-5671.
  • 68
    Moliterno AR, Roboz GJ, Carroll M, et al. An open label study of CEP-701 in patients with JAK2V617F positive polycythemia vera and essential thrombocytosis [abstract]. ASH Annual Meeting Abstracts. Blood. 2008; 112:Page. Abstract 99.
  • 69
    Verstovsek S, Tefferi A, Kornblau S, et al. Phase II study of CEP701 an orally available JAK2 inhibitor in patients with primary myelofibrosis and post polycythemia vera/essential thrombocythemia myelofibrosis [abstract]. ASH Annual Meeting Abstracts. Blood. 2007; 110:Page. Abstract 3543.
  • 70
    Hexner E, Goldberg JD, Prchal JT, et al. A multicenter, open label Phase I/II study of CEP701 (Lestaurtinib) in adults with myelofibrosis; a report on phase I: a study of the myeloproliferative disorders research consortium [abstract]. ASH Annual Meeting Abstracts. Blood. 2009; 114: Page. Abstract 754.
  • 71
    Goh KC, Ong WC, Hu C, et al. SB1518: a potent and orally active JAK2 inhibitor for the treatment of myeloproliferative disorders [abstract]. ASH Annual Meeting Abstracts. Blood. 2007; 110:Page. Abstract 538.
  • 72
    Verstovsek S, Odenike O, Scott B, et al. Phase I dose-escalation trial of SB1518, a novel JAK2/FLT3 inhibitor, in acute and chronic myeloid diseases, including primary or post-essential thrombocythemia/polycythemia vera myelofibrosis [abstract]. ASH Annual Meeting Abstracts. Blood. 2009; 114: Page. Abstract 3905.
  • 73
    Duek A, Lichman I, Shtalrid M, et al. The Jak2-Inhibitor AG490 affects survival of BFU-E and CFU-GM of myeloproliferative disorder cells carrying the JAK2 V617F mutation [abstract]. ASH Annual Meeting Abstracts. Blood. 2006; 108:Page. Abstract 4907.
  • 74
    Zaleskas V, Chan W, Evangelista P, et al. A selective and potent oral inhibitor of the JAK2 tyrosine kinase reverses polycythemia and leukocytosis induced by JAK2 V617F in a mouse model [abstract]. ASH Annual Meeting Abstracts. Blood. 2007; 110:Page. Abstract 557.
  • 75
    Sayyah J, Ostrov D, Sayeski P, et al. Identification and characterization of a novel JAK2 tyrosine kinase inhibitor [abstract]. ASH Annual Meeting Abstracts. Blood. 2006; 108: 3604.
  • 76
    Wernig G, Kharas M, Leeman D, et al. EXEL-8232 a small molecule JAK2 inhibitor effectively treats thrombocytosis and extramedullary hematopoiesis in a murine model of myeloproliferative disease induced by MPLW515L [abstract]. ASH Annual Meeting Abstracts. Blood. 2008; 112: Page. Abstract 3741.
  • 77
    Gozgit J, Bebernitz G, Patil P, et al. Effects of a novel selective JAK2 inhibitor AZ60 on STAT5 signaling and cellular growth in JAK2 V617F cell lines [abstract]. ASH Annual Meeting Abstracts. Blood. 2007; 110:Page. Abstract 3549.
  • 78
    . Pardanani A, Hood J, Lasho T, et al. TG101209 a selective JAK2 kinase inhibitor suppresses endogenous and cytokine supported colony formation from hematopoietic progenitors carrying JAK2V617F or MPLW515K/L mutations [abstract]. ASH Annual Meeting Abstracts. Blood. 2006; 108:Page. Abstract 2680.
  • 79
    Squires MS, Curry JE, Dawson MA, et al. AT9283, a potent inhibitor of JAK2, is active in JAK2 V617F myeloproliferative disease models [abstract]. ASH Annual Meeting Abstracts. Blood. 2007; 110:Page. Abstract 3537.
  • 80
    Bumm T, Tyner JW, Deininger J, et al. Effects of CYT387, a potent novel JAK2 inhibitor on JAK2-V617F induced MPD [abstract]. ASH Annual Meeting Abstracts. Blood. 2008; 112:Page. Abstract 856.
  • 81
    Markovtsov V, Tonkin E, Fang S, et al. In vitro and in vivo inhibition of JAK2 signaling by potent and selective JAK2 inhibitor [abstract]. ASH Annual Meeting Abstracts. Blood. 2008; 112:Page. Abstract 3721.
  • 82
    Shide K, Kameda T, Markovtsov, et al. Efficacy of R723, a potent and selective JAK2 inhibitor, in JAK2V617F-induced murine MPD model [abstract]. ASH Annual Meeting Abstracts. Blood. 2009; 114:Page. Abstract 3897.
  • 83
    Lipka D, Hoffmann L, Heidel F, et al. The JAK2 kinase inhibitor LS104 induces growth arrest and apoptosis in JAK2V617F positive cells [abstract]. ASH Annual Meeting Abstracts. Blood. 2007; 110:Page. Abstract 3544.
  • 84
    Delhommeau F, Dupont S, Della Valle V, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009; 360: 2289-2301.
  • 85
    Dawson MA, Bannister AJ, Gottgens B, et al. JAK2 phosphorylates histone H3Y41 and excludes HP1α from chromatin. Nature. 2009; 461: 819-824.
  • 86
    Guerini V, Barbui V, Spinelli O, et al. Selective targeting of the JAK2V617F mutation in polycythemia vera and essential thrombocythemia by ITF2357, a novel histone deacetylase inhibitor [abstract]. ASH Annual Meeting Abstracts. Blood. 2007; 110:Page. Abstract 555.
  • 87
    Rambaldi A, Dellacasa CM, Salmoiraghi S, et al. A phase 2A study of the histone deacetylase inhibitor ITF2357 in patients with JAK2V617F positive chronic myeloproliferative neoplasms [abstract]. ASH Annual Meeting Abstracts. Blood. 2008; 112:Page. Abstract 100.
  • 88
    Kiladjian JJ, Cassinat B, Chevret S, et al. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood. 2008; 112: 3065-3072.
  • 89
    Quintas-Cardama A, Kantarjian HM, Manshouri T, et al. Pegylated interferon alfa-2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocythemia and polycythemia vera. J Clin Oncol. 2009; 27: 5418-5424.
  • 90
    Mesa RA, Elliott MA, Schroeder G, et al. Durable responses to thalidomide-based drug therapy for myelofibrosis with myeloid metaplasia. Mayo Clin Proc. 2004; 79: 883-889.
  • 91
    Marchetti M, Barosi G, Balestri F, et al. Low-dose thalidomide ameliorates cytopenias and splenomegaly in myelofibrosis with myeloid metaplasia: a Phase II trial. J Clin Oncol. 2004; 22: 424-431.
  • 92
    Abgrall J-F, Guibaud I, Bastie J-N, et al. Thalidomide versus placebo in myeloid metaplasia with myelofibrosis: a prospective, randomized, double-blind, multicenter study. Haematologica. 2006; 91: 1027-1032.
  • 93
    Thomas DA, Giles FJ, Albitar M, et al. Thalidomide therapy for myelofibrosis with myeloid metaplasia. Cancer. 2006; 106: 1974-1984.
  • 94
    Tefferi A, Cortes J, Verstovsek S, et al. Lenalidomide therapy in myelofibrosis with myeloid metaplasia. Blood. 2006; 108: 1158-1164.
  • 95
    Quintas-Cardama A, Kantarjian HM, Manshouri T, et al. Lenalidomide plus prednisone results in durable clinical, histopathologic, and molecular responses in patients with myelofibrosis. J Clin Oncol. 2009; 27: 4760-4766.
  • 96
    Tefferi A, Barosi G, Mesa RA, et al. International Working Group (IWG) consensus criteria for treatment response in myelofibrosis with myeloid metaplasia, for the IWG for Myelofibrosis Research and Treatment (IWG-MRT). Blood. 2006; 108: 1497-1503.
  • 97
    Mesa RA, Pardanani AD, Hussein K, et al. Phase 1/2 dose finding study of pomalidomide in myelofibrosis [abstract]. ASH Annual Meeting Abstracts. Blood. 2009; 114:Page. Abstract 2911.
  • 98
    Tefferi A, Verstovsek S, Barosi G, et al. Pomalidomide is active in the treatment of anemia associated with myelofibrosis. J Clin Oncol. 2009; 27: 4563-4569.