• 1
    Vardiman JW, Brunning RD, Arber DA, et al. Introduction and overview of the classification of the myeloid neoplasms. In: Swerdlow SH, Campo E, Harris NL, et al. eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France: IARC Press; 2008: 18-30.
  • 2
    Dingli D, Schwager SM, Mesa RA, Li CY, Dewald GW, Tefferi A. Presence of unfavorable cytogenetic abnormalities is the strongest predictor of poor survival in secondary myelofibrosis. Cancer. 2006; 106: 1985-1989.
  • 3
    Gangat N, Caramazza D, Vaidya R, et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011; 29: 392-397.
  • 4
    Passamonti F, Cervantes F, Vannucchi AM, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2010; 115: 1703-1708.
  • 5
    Onida F, Kantarjian HM, Smith TL, et al. Prognostic factors and scoring systems in chronic myelomonocytic leukemia: a retrospective analysis of 213 patients. Blood. 2002; 99: 840-849.
  • 6
    James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005; 434: 1144-1148.
  • 7
    Kralovics R, Passamonati F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005; 352: 1779-1790.
  • 8
    Tefferi A, Lasho TL, Patnaik MM, et al. JAK2 germline genetic variation affects disease susceptibility in primary myelofibrosis regardless of V617F mutational status: nullizygosity for the JAK2 46/1 haplotype is associated with inferior survival. Leukemia. 2010; 24: 105-109.
  • 9
    Szpurka H, Jankowska AM, Makishima H, et al. Spectrum of mutations in RARS-T patients includes TET2 and ASXL1 mutations. Leuk Res. 2010; 34: 969-973.
  • 10
    Gurevich I, Luthra R, Konoplev SN, Yin CC, Medeiros LJ, Lin P. Refractory anemia with ring sideroblasts associated with marked thrombocytosis: a mixed group exhibiting a spectrum of morphologic findings. Am J Clin Pathol. 2011; 135: 398-403.
  • 11
    Jankowska AM, Szpurka H, Tiu RV, et al. Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood. 2009; 113: 6403-6410.
  • 12
    Delhommeau F, Dupont S, Della Valle V, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009; 360: 2289-2301.
  • 13
    Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 2010; 24: 1128-1138.
  • 14
    Makishima H, Rataul M, Gondek LP, et al. FISH and SNP-A karyotyping in myelodysplastic syndromes: improving cytogenetic detection of del(5q), monosomy 7, del(7q), trisomy 8 and del(20q). Leuk Res. 2010; 34: 447-453.
  • 15
    Sugimoto Y, Muramatsu H, Makishima H, et al. Spectrum of molecular defects in juvenile myelomonocytic leukaemia includes ASXL1 mutations. Br J Haematol. 2010; 150: 83-87.
  • 16
    Pardanani A, Lasho TL, Finke CM, Mai M, McClure RF, Tefferi A. IDH1 and IDH2 mutation analysis in chronic-and blast-phase myeloproliferative neoplasms. Leukemia. 2010; 24: 1146-1151.
  • 17
    Grand FH, Hidalgo-Curtis CE, Ernst T, et al. Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood. 2009; 113: 6182-6192.
  • 18
    Oh ST, Simonds EF, Jones C, et al. Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood. 2010; 116: 988-992.
  • 19
    Abdel-Wahab O, Pardanani A, Patel LJ, et al. Concomitant analysis of EZH2 and ASXL1 mutations in myelofibrosis, chronic myelomonocytic leukemia and blast-phase myeloproliferative neoplasms [abstract]. Blood. 2010; 116: 3070.
  • 20
    Besa EC, Nowell PC, Geller NL, Gardner FH. Analysis of the androgen response of 23 patients with agnogenic myeloid metaplasia: the value of chromosomal studies in predicting response and survival. Cancer. 1982; 49: 308-313.
  • 21
    Cervantes F, Alvarez-Larran A, Domingo A, Arellano-Rodrigo E, Montserrat E. Efficacy and tolerability of danazol as a treatment for the anaemia of myelofibrosis with myeloid metaplasia: long-term results in 30 patients. Br J Haematol. 2005; 129: 771-775.
  • 22
    Mesa RA, Steensma DP, Pardanani A, et al. A phase 2 trial of combination low-dose thalidomide and prednisone for the treatment of myelofibrosis with myeloid metaplasia. Blood. 2003; 101: 2534-2541.
  • 23
    Thomas DA, Giles LFJ, Albitar M, et al. Thalidomide therapy for myelofibrosis with myeloid metaplasia. Cancer. 2006; 106: 1974-1984.
  • 24
    Tefferi A, Cortes J, Verstovesk S, et al. Lenalidomide therapy in myelofibrosis with myeloid metaplasia. Blood. 2006; 108: 1158-1164.
  • 25
    Quintas-Cardama A, Kantarjian HM, Manshouri T, et al. Lenalidomide plus prednisone results in durable clinical, histopathologic, and molecular responses in patients with myelofibrosis. J Clin Oncol. 2009; 27: 4760-4766.
  • 26
    Mesa RA, Yao X, Cripe LD, et al. Lenalidomide and prednisone for myelofibrosis: Eastern Cooperative Oncology Group (ECOG) phase 2 trial E4903. Blood. 2010; 116: 4436-4438.
  • 27
    Thapaliya P, Tefferi A, Pardanani A, et al. International Working Group for Myelofibrosis Research and Treatment response assessment and long-term follow-up of 50 myelofibrosis patients treated with thalidomide-prednisone based regimens. Am J Hematol. 2011; 86: 96-98.
  • 28
    Iastrebner M, Jang JH, Nucifora E, et al. Decitabine in myelodysplastic syndromes and chronic myelomonocytic leukemia: Argentinian/South Korean multi-institutional clinical experience. Leuk Lymphoma. 2010; 51: 2250-2257.
  • 29
    Costa R, Abdulhaq H, Haq B, et al. Activity of azacitidine in chronic myelomonocytic leukemia. Cancer. 2011; 117: 2690-2696.
  • 30
    Scott BL, Ramakrishnan A, Storer B, et al. Prolonged responses in patients with MDS and CMML treated with azacitidine and etanercept. Br J Haematol. 2010; 148: 944-947.
  • 31
    Vey N, Bosly A, Guerci A, et al. Arsenic trioxide in patients with myelodysplastic syndromes: a phase II multicenter study. J Clin Oncol. 2006; 24: 2465-2471.
  • 32
    Raza A, Meyer P, Dutt D, et al. Thalidomide produces transfusion independence in long-standing refractory anemias of patients with myelodysplastic syndromes. Blood. 2001; 98: 958-965.
  • 33
    Musto P, Falcone A, Sanpaolo G, Bisceglia M, Matera R, Carella AM. Thalidomide abolishes transfusion-dependence in selected patients with myelodysplastic syndromes. Haematologica. 2002; 87: 884-886.
  • 34
    Musto P. Thalidomide therapy in adult patients with myelodysplastic syndrome: a North Central Cancer Treatment Group phase II trial. Cancer. 2007; 109: 1211-1212; author reply 1212.
  • 35
    Strupp C, Germing U, Aivado M, Misgeld E, Haas R, Gattermann N. Thalidomide for the treatment of patients with myelodysplastic syndromes. Leukemia. 2002; 16: 1-6.
  • 36
    Moreno-Aspitia A, Colon-Otero G, Hoering A, et al. Thalidomide therapy in adult patients with myelodysplastic syndrome. A North Central Cancer Treatment Group phase II trial. Cancer. 2006; 107: 767-772.
  • 37
    Raza A, Buonamici S, Lisak L, et al. Arsenic trioxide and thalidomide combination produces multi-lineage hematological responses in myelodysplastic syndromes patients, particularly in those with high pretherapy EVI1 expression. Leuk Res. 2004; 28: 791-803.
  • 38
    Sekeres MA, Maciejewski JP, Erba HP, et al. A phase 2 study of combination therapy with arsenic trioxide and gemtuzumab ozogamicin in patients with myelodysplastic syndromes or secondary acute myeloid leukemia. Cancer. 2011; 117: 1253-1261.
  • 39
    List A, Shiller G, Mason J, Douer D, Ellison R. Trisenox (arsenic trioxide) in patients with myelodysplastic syndromes (MDS): preliminary findings in a phase II clinical study [abstract]. Blood. 2003; 102: 422a.
  • 40
    Chen GQ, Shi ZG, Tang W, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood. 1997; 89: 3345-3353.
  • 41
    Chen GQ, Zhu J, Shi XG, et al. In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood. 1996; 88: 1052-1061.
  • 42
    Grad JM, Bahlis NJ, Reis I, Oshiro MM, Dalton WS, Boise LH. Ascorbic acid enhances arsenic trioxide-induced cytotoxicity in multiple myeloma cells. Blood. 2001; 98: 805-813.
  • 43
    Dai J, Weinberg RS, Wasman S, Jing Y. Malignant cells can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system. Blood. 1999; 93: 268-277.
  • 44
    Bahlis NJ, McCafferty-Grad J, Jordan-McMurry I, et al. Feasibility and correlates of arsenic trioxide combined with ascorbic acid-mediated depletion of intracellular glutathione for the treatment of relapsed/refractory multiple myeloma. Clin Cancer Res. 2002; 8: 3658-3668.
  • 45
    Jaffe ES, Harris NL, Stein H, Vardiman JW, eds. World Health Organization Classification of Tumors of Hematopoietic and Lymphoid Tissues. Lyon, France: IARC Press; 2001.
  • 46
    Cheson BD, Greenberg PL, Bennett JM, et al. Clinical application and proposal for modification of the International Working Group (IWG) response criteria in myelodysplasia. Blood. 2006; 108: 419-425.
  • 47
    Tefferi A, Barosi G, Mesa RA, et al. IWG for Myelofibrosis Research and Treatment (IWG-MRT). International Working Group (IWG) consensus criteria for treatment response in myelofibrosis with myeloid metaplasia, for the IWG for Myelofibrosis Research and Treatment (IWG-MRT). Blood. 2006; 108: 1497-1503.
  • 48
    Bouscary D, Legros L, Tulliez M, et al. for the Groupe Francais des Myelodysplasies (GFM). A nonrandomised dose-escalating phase II study of thalidomide for the treatment of patients with low-risk myelodysplastic syndromes: the Thal-SMD-2000 trial of the Groupe Francais des Myelodysplasies. Br J Haematol. 2005; 131: 609-618.
  • 49
    Bowen D, MacIlwaine L, Cavanaugh J, et al. Thalidomide therapy for low-risk myelodysplasia. Leuk Res. 2005; 29: 235-236.
  • 50
    Jabbour E, Thomas D, Kantarjian H, et al. Comparison of thalidomide and lenalidomide as therapy for myelofibrosis. Blood. 2011; 118: 899-902.