SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Ferenci P, Fried M, Labrecque D, et al. Hepatocellular carcinoma (HCC): a global perspective. J Clin Gastroenterol. 2010; 44: 239-245.
  • 2
    Centers for Disease Control and Prevention (CDC) Hepatocellular carcinoma—United States, 2001-2006. MMWR Morb Mortal Weekly Rep. 2010; 59: 517-520.
  • 3
    El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011; 365: 1118-1127.
  • 4
    El-Serag HB. Hepatocellular carcinoma and hepatitis C in the United States. Hepatology. 2002; 36( 5 suppl 1): S74-S783.
  • 5
    Hussain K, El-Serag HB. Epidemiology, screening, diagnosis and treatment of hepatocellular carcinoma. Minerva Gastroenterol Dietol. 2009; 55: 123-138.
  • 6
    Artinyan A, Mailey B, Sanchez-Luege N, et al. Race, ethnicity, and socioeconomic status influence the survival of patients with hepatocellular carcinoma in the United States. Cancer. 2010; 116: 1367-1377.
  • 7
    US Department of Health and Human Services. Medically Underserved Areas and Populations (MUA/Ps). Guidelines for MUA and MUP Designation. Available at: http://bhpr.hrsa.gov/shortage/muaps/. Accessed February 23, 2012.
  • 8
    Harvin JA, Van Buren G, Tsao K, Cen P, Ko TC, Wray CJ. Hepatocellular carcinoma survival in uninsured and underinsured patients. J Surg Res. 2011; 166: 189-193.
  • 9
    Mallett S, Royston P, Dutton S, Waters R, Altman DG. Reporting methods in studies developing prognostic models in cancer: a review [serial online]. BMC Med. 2010; 8: 20.
  • 10
    Riley RD, Sauerbrei W, Altman DG. Prognostic markers in cancer: the evolution of evidence from single studies to meta-analysis, and beyond. Br J Cancer. 2009; 100: 1219-1229.
  • 11
    Stone P, Kelly L, Head R, White S. Development and validation of a prognostic scale for use in patients with advanced cancer. Palliat Med. 2008; 22: 711-717.
  • 12
    Ohno-Machado L. Modeling medical prognosis: survival analysis techniques. J Biomed Inform. 2001; 34: 428-439.
  • 13
    Schumacher M, Graf E, Gerds T. How to assess prognostic models for survival data: a case study in oncology. Methods Inf Med. 2003; 42: 564-571.
  • 14
    Knaus WA, Wagner DP, Draper EA, et al. The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest. 1991; 100: 1619-1636.
  • 15
    Siro CA, Bastos PG, Knaus WA, Wagner DP. APACHE II scores in the prediction of multiple organ failure syndrome. Arch Surg. 1991; 126: 528-529.
  • 16
    Kamath PS, Wiesner RH, Malinchoc M, et al. A model to predict survival in patients with end-stage liver disease. Hepatology. 2001; 33: 464-470.
  • 17
    Kohn L. To err is human: an interview with the Institute of Medicine's Linda Kohn. Jt Comm J Qual Improv. 2000; 26: 227-234.
  • 18
    Kohn LT. Organizing and managing care in a changing health system. Health Serv Res. 2000; 35( 1 pt 1): 37-52.
  • 19
    Steyerberg EW, Eijkemans MJ, Harrell FE Jr, Habbema JD. Prognostic modelling with logistic regression analysis: a comparison of selection and estimation methods in small data sets. Stat Med. 2000; 19: 1059-1079.
  • 20
    Harrell WA, Spaulding LM. Social psychological models of choice behavior and drivers' left turns. J Soc Psychol. 2001; 141: 714-722.
  • 21
    Royston P, Moons KG, Altman DG, Vergouwe Y. Prognosis and prognostic research: developing a prognostic model [serial online]. BMJ. 2009; 338: b604.
  • 22
    Newson RB. Comparing the predictive powers of survival models using Harrell's C or Somers' D. Stata J. 2010; 10: 339-358.
  • 23
    Royston P, Sauerbrei W. A new measure of prognostic separation in survival data. Stat Med. 2004; 23: 723-748.
  • 24
    Newson R. Confidence intervals for rank statistics: Somers' D and extensions. Stata J. 2006; 6: 309-334.
  • 25
    Pepe MS, Longton G, Janes H. Estimation and comparison of receiver operating characteristic curves. Stata J. 2009; 9: 1-16.
  • 26
    Cummings P. Estimating adjusted risk ratios for matched and unmatched data: an update. Stata J. 2011; 11: 290-298.
  • 27
    Wiesner RH, McDiarmid SV, Kamath PS, et al. MELD and PELD: application of survival models to liver allocation. Liver Transpl. 2001; 7: 567-580.
  • 28
    Brown DB, Fundakowski CE, Lisker-Melman M, et al. Comparison of MELD and Child-Pugh scores to predict survival after chemoembolization for hepatocellular carcinoma. J Vasc Interv Radiol. 2004; 15: 1209-1218.
  • 29
    Soga K, Tomikashi K, Miyawaki K, et al. MELD score, Child-Pugh score, and decreased albumin as risk factors for gastric variceal bleeding. Hepatogastroenterology. 2009; 56: 1552-1556.
  • 30
    Telem DA, Schiano T, Goldstone R, et al. Factors that predict outcome of abdominal operations in patients with advanced cirrhosis. Clin Gastroenterol Hepatol. 2010; 8: 451-457; quiz e58.
  • 31
    Hosmer DW, Lemeshow S, May S. Applied Survival Analysis: Regression Modeling of Time-To-Event Data. 2nd ed. Hoboken, NJ: Wiley-Interscience; 2008.
  • 32
    The AM, Hak T, Koeter G, van Der Wal G. Collusion in doctor-patient communication about imminent death: an ethnographic study. BMJ. 2000; 321: 1376-1381.
  • 33
    Glare P, Virik K, Jones M, et al. A systematic review of physicians' survival predictions in terminally ill cancer patients. BMJ. 2003; 327: 195-198.
  • 34
    Lamont EB, Christakis NA. Prognostic disclosure to patients with cancer near the end of life. Ann Intern Med. 2001; 134: 1096-1105.
  • 35
    Schwartz JM, Ham JM. Treatment of hepatocellular carcinoma. Curr Treat Options Gastroenterol. 2003; 6: 465-472.