SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Grivas PD, Kiaris H, Papavassiliou AG. Tackling transcription factors: challenges in antitumor therapy. Trends Mol Med. 2011; 17: 537-538.
  • 2
    Lonard DM, O'Malley BW. Nuclear receptor coregulators: judges, juries, and executioners of cellular regulation. Mol Cell. 2007; 27: 691-700.
  • 3
    Rosenfeld MG, Lunyak VV, Glass CK. Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev. 2006; 20: 1405-1428.
  • 4
    Perissi V, Jepsen K, Glass CK, Rosenfeld MG. Deconstructing repression: evolving models of co-repressor action. Nat Rev Gen. 2010; 11: 109-123.
  • 5
    Stewart MD, Wong J. Nuclear receptor repression: regulatory mechanisms and physiological implications. Prog Mol Biol Transl Sci. 2009; 87: 235-259.
  • 6
    Gurevich I, Flores AM, Aneskievich BJ. Corepressors of agonist-bound nuclear receptors. Toxicol Appl Pharmacol. 2007; 223: 288-298.
  • 7
    Watson PJ, Fairall L, Schwabe JW. Nuclear hormone receptor co-repressors: structure and function. Mol Cell Endocrinol. 2012; 348: 440-449.
  • 8
    Battaglia S, Maguire O, Campbell MJ. Transcription factor co-repressors in cancer biology: roles and targeting. Int J Cancer. 2010; 126: 2511-2519.
  • 9
    Liu Y, Chen W, Gaudet J, et al. Structural basis for recognition of SMRT/N-CoR by the MYND domain and its contribution to AML1/ETO's activity. Cancer Cell. 2007; 11: 483-497.
  • 10
    Straza MW, Paliwal S, Kovi RC, et al. Therapeutic targeting of C-terminal binding protein in human cancer. Cell Cycle. 2010; 9: 3740-3750.
  • 11
    Chinnadurai G. The transcriptional corepressor CtBP: a foe of multiple tumor suppressors. Cancer Res. 2009; 69: 731-734.
  • 12
    Chen YW, Paliwal S, Draheim K, Grossman SR, Lewis BC. p19Arf inhibits the invasion of hepatocellular carcinoma cells by binding to C-terminal binding protein. Cancer Res. 2008; 68: 476-482.
  • 13
    Stossi F, Madak-Erdogan Z, Katzenellenbogen BS. Estrogen receptor alpha represses transcription of early target genes via p300 and CtBP1. Mol Cell Biol. 2009; 29: 1749-1759.
  • 14
    Chua CW, Chiu YT, Yuen HF, et al. Suppression of androgen-independent prostate cancer cell aggressiveness by FTY720: validating Runx2 as a potential antimetastatic drug screening platform. Clin Cancer Res. 2009; 15: 4322-4335.
  • 15
    Chuang LS, Lai SK, Murata-Hori M, et al. RUNX3 interactome reveals novel centrosomal targeting of RUNX family of transcription factors. Cell Cycle. 2012; 11: 1938-1947.
  • 16
    Niu DF, Kondo T, Nakazawa T, et al. Transcription factor Runx2 is a regulator of epithelial-mesenchymal transition and invasion in thyroid carcinomas. Lab Invest. 2012; 92: 1181-1190.
  • 17
    Lakowski B, Roelens I, Jacob S. CoREST-like complexes regulate chromatin modification and neuronal gene expression. J Mol Neurosci. 2006; 29: 227-239.
  • 18
    Thillainadesan G, Isovic M, Loney E, Andrews J, Tini M, Torchia J. Genome analysis identifies the p15ink4b tumor suppressor as a direct target of the ZNF217/CoREST complex. Mol Cell Biol. 2008; 28: 6066-6077.
  • 19
    Liu Y, Smith PW, Jones DR. Breast cancer metastasis suppressor 1 functions as a corepressor by enhancing histone deacetylase 1-mediated deacetylation of RelA/p65 and promoting apoptosis. Mol Cell Biol. 2006; 26: 8683-8696.
  • 20
    Edmonds MD, Hurst DR, Vaidya KS, Stafford LJ, Chen D, Welch DR. Breast cancer metastasis suppressor 1 coordinately regulates metastasis-associated microRNA expression. Int J Cancer. 2009; 125: 1778-1785.
  • 21
    Metge BJ, Frost AR, King JA, et al. Epigenetic silencing contributes to the loss of BRMS1 expression in breast cancer. Clin Exp Metastasis. 2008; 25: 753-763.
  • 22
    Meehan WJ, Samant RS, Hopper JE, et al. Breast cancer metastasis suppressor 1 (BRMS1) forms complexes with retinoblastoma-binding protein 1 (RBP1) and the mSin3 histone deacetylase complex and represses transcription. J Biol Chem. 2004; 279: 1562-1569.
  • 23
    Hurst DR, Welch DR. Unraveling the enigmatic complexities of BRMS1-mediated metastasis suppression. FEBS Lett. 2011; 585: 3185-3190.
  • 24
    Lai AY, Wade PA. Cancer biology and NuRD: a multifaceted chromatin remodelling complex. Nat Rev Cancer. 2011; 11: 588-596.
  • 25
    Manavathi B, Singh K, Kumar R. MTA family of coregulators in nuclear receptor biology and pathology [serial online]. Nucl Recept Signal. 2007; 5: e010.
  • 26
    Wang Y, Zhang H, Chen Y, et al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell. 2009; 138: 660-672.
  • 27
    Ramirez J, Hagman J. The Mi-2/NuRD complex: a critical epigenetic regulator of hematopoietic development, differentiation and cancer. Epigenetics. 2009; 4: 532-536.
  • 28
    Kai L, Samuel SK, Levenson AS. Resveratrol enhances p53 acetylation and apoptosis in prostate cancer by inhibiting MTA1/NuRD complex. Int J Cancer. 2010; 126: 1538-1548.
  • 29
    Hsia EY, Goodson ML, Zou JX, Privalsky ML, Chen HW. Nuclear receptor coregulators as a new paradigm for therapeutic targeting. Adv Drug Deliv Rev. 2010; 62: 1227-1237.
  • 30
    Fujita N, Jaye DL, Kajita M, Geigerman C, Moreno CS, Wade PA. MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell. 2003; 113: 207-219.
  • 31
    Vaiopoulos AG, Kostakis ID, Athanasoula KCh, Papavassiliou AG. Targeting transcription factor corepressors in tumor cells. Cell Mol Life Sci. 2012; 69: 1745-1753.
  • 32
    Biancotto C, Frige G, Minucci S. Histone modification therapy of cancer. Adv Genet. 2010; 70: 341-386.
  • 33
    Horlein AJ, Naar AM, Heinzel T, et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature. 1995; 377: 397-404.
  • 34
    Chen JD, Evans RM. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature. 1995; 377: 454-457.
  • 35
    Li J, Wang J, Nawaz Z, Liu JM, Qin J, Wong J. Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. EMBO J. 2000; 19: 4342-4350.
  • 36
    Tiefenbach J, Novac N, Ducasse M, Eck M, Melchior F, Heinzel T. SUMOylation of the corepressor N-CoR modulates its capacity to repress transcription. Mol Biol Cell. 2006; 17: 1643-1651.
  • 37
    Lin RJ, Nagy L, Inoue S, Shao W, Miller WH Jr, Evans RM. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature. 1998; 391: 811-814.
  • 38
    Minucci S, Maccarana M, Cioce M, et al. Oligomerization of RAR and AML1 transcription factors as a novel mechanism of oncogenic activation. Mol Cell. 2000; 5: 811-820.
  • 39
    Vrba J, Trtkova K, Ulrichova J. HDAC inhibitors sodium butyrate and sodium valproate do not affect human ncor1 and ncor2 gene expression in HL-60 cells. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2011; 155: 259-262.
  • 40
    Girault I, Lerebours F, Amarir S, et al. Expression analysis of estrogen receptor alpha coregulators in breast carcinoma: evidence that NCOR1 expression is predictive of the response to tamoxifen. Clin Cancer Res. 2003; 9: 1259-1266.
  • 41
    Zhang Z, Yamashita H, Toyama T, et al. NCOR1 mRNA is an independent prognostic factor for breast cancer. Cancer Lett. 2006; 237: 123-129.
  • 42
    Abedin SA, Thorne JL, Battaglia S, et al. Elevated NCOR1 disrupts a network of dietary-sensing nuclear receptors in bladder cancer cells. Carcinogenesis. 2009; 30: 449-456.
  • 43
    Tzelepi V, Grivas P, Kefalopoulou Z, Kalofonos H, Varakis JN, Sotiropoulou-Bonikou G. Expression of estrogen receptor co-regulators NCoR and PELP1 in epithelial cells and myofibroblasts of colorectal carcinomas: cytoplasmic translocation of NCoR in epithelial cells correlates with better [corrected] prognosis. Virchows Arch. 2009; 454: 41-53.
  • 44
    Song LN, Gelmann EP. Silencing mediator for retinoid and thyroid hormone receptor and nuclear receptor corepressor attenuate transcriptional activation by the beta-catenin-TCF4 complex. J Biol Chem. 2008; 283: 25988-25999.
  • 45
    Fernandez-Majada V, Pujadas J, Vilardell F, et al. Aberrant cytoplasmic localization of N-CoR in colorectal tumors. Cell Cycle. 2007; 6: 1748-1752.
  • 46
    Lopez-Garcia J, Periyasamy M, Thomas RS, et al. ZNF366 is an estrogen receptor corepressor that acts through CtBP and histone deacetylases. Nucleic Acids Res. 2006; 34: 6126-6136.
  • 47
    Phelps RA, Chidester S, Dehghanizadeh S, et al. A 2-step model for colon adenoma initiation and progression caused by APC loss. Cell. 2009; 137: 623-634.
  • 48
    Bosserhoff AK, Echtenacher B, Hein R, Buettner R. Functional role of melanoma inhibitory activity in regulating invasion and metastasis of malignant melanoma cells in vivo. Melanoma Res. 2001; 11: 417-421.
  • 49
    Deng Y, Liu J, Han G, et al. Redox-dependent Brca1 transcriptional regulation by an NADH-sensor CtBP1. Oncogene. 2010; 29: 6603-6608.
  • 50
    Lim S, Janzer A, Becker A, et al. Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology. Carcinogenesis. 2010; 31: 512-520.
  • 51
    Schulte JH, Lim S, Schramm A, et al. Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastoma: implications for therapy. Cancer Res. 2009; 69: 2065-2071.
  • 52
    Kahl P, Gullotti L, Heukamp LC, et al. Androgen receptor coactivators lysine-specific histone demethylase 1 and 4 and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res. 2006; 66: 11341-11347.
  • 53
    Huang Y, Stewart TM, Wu Y, et al. Novel oligoamine analogues inhibit lysine-specific demethylase 1 and induce re-expression of epigenetically silenced genes. Clin Cancer Res. 2009; 15: 7217-7228.
  • 54
    Watanabe H, Mizutani T, Haraguchi T, et al. SWI/SNF complex is essential for NRSF-mediated suppression of neuronal genes in human nonsmall cell lung carcinoma cell lines. Oncogene. 2006; 25: 470-479.
  • 55
    Vaillant F, Blyth K, Terry A, et al. A full-length Cbfa1 gene product perturbs T-cell development and promotes lymphomagenesis in synergy with myc. Oncogene. 1999; 18: 7124-7134.
  • 56
    Liu XH, Kirschenbaum A, Yao S, Liu G, Aaronson SA, Levine AC. Androgen-induced Wnt signaling in preosteoblasts promotes the growth of MDA-PCa-2b human prostate cancer cells. Cancer Res. 2007; 67: 5747-5753.
  • 57
    Altieri DC, Languino LR, Lian JB, et al. Prostate cancer regulatory networks. J Cell Biochem. 2009; 107: 845-852.
  • 58
    Baeuerle PA, Baltimore D. I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science. 1988; 242: 540-546.
  • 59
    Konstantinopoulos PA, Papavassiliou AG. Seeing the future of cancer-associated transcription factor drug targets. JAMA. 2011; 305: 2349-2350.
  • 60
    Rangwala S, Zhang C, Duvic M. HDAC inhibitors for the treatment of cutaneous T-cell lymphomas. Future Med Chem. 2012; 4: 471-486.
  • 61
    Battaglia S, Maguire O, Thorne JL, et al. Elevated NCOR1 disrupts PPARalpha/gamma signaling in prostate cancer and forms a targetable epigenetic lesion. Carcinogenesis. 2010; 31: 1650-1660.
  • 62
    Trtkova K, Paskova L, Matijescukova N, Kolar Z. Formation of AR-SMRT binding in prostate cancer cells treated with natural histone deacetylase inhibitor. Cancer Biomark. 2010; 7: 79-90.
  • 63
    Hagelkruys A, Sawicka A, Rennmayr M, Seiser C. The biology of HDAC in cancer: the nuclear and epigenetic components. Handb Exp Pharmacol. 2011; 206: 13-37.
  • 64
    Park DM, Li J, Okamoto H, et al. N-CoR pathway targeting induces glioblastoma derived cancer stem cell differentiation. Cell Cycle. 2007; 6: 467-470.
  • 65
    Lu J, Zhuang Z, Song DK, et al. The effect of a PP2A inhibitor on the nuclear receptor corepressor pathway in glioma. J Neurosurg. 2010; 113: 225-233.
  • 66
    Foley NH, Bray I, Watters KM, et al. MicroRNAs 10a and 10b are potent inducers of neuroblastoma cell differentiation through targeting of nuclear receptor corepressor 2. Cell Death Differ. 2011; 18: 1089-1098.
  • 67
    Ng AP, Nin DS, Fong JH, Venkataraman D, Chen CS, Khan M. Therapeutic targeting of nuclear receptor corepressor misfolding in acute promyelocytic leukemia cells with genistein. Mol Cancer Ther. 2007; 6: 2240-2248.
  • 68
    Cutrupi S, Reineri S, Panetto A, et al. Targeting of the adaptor protein Tab2 as a novel approach to revert tamoxifen resistance in breast cancer cells [serial online]. Oncogene. 2012; 31: 4420.
  • 69
    Wichmann C, Grez M, Lausen J. Molecular targeting of aberrant transcription factors in leukemia: strategies for RUNX1/ETO. Curr Drug Targets. 2010; 11: 1181-1191.
  • 70
    Birts CN, Harding R, Soosaipillai G, et al. Expression of CtBP family protein isoforms in breast cancer and their role in chemoresistance. Biol Cell. 2010; 103: 1-19.
  • 71
    Itzykson R, Fenaux P. Hypomethylating agents for the treatment of myelodysplastic syndromes. Bull Cancer. 2011; 98: 927-934.