SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Kwak EL, Bang YJ, Camidge DR, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010; 363: 1693-1703.
  • 2
    US Food and Drug Administration (FDA). FDA approves Xalkori with companion diagnostic for a type of late-stage lung cancer [press release]. Available at: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm269856.htm. [Accessed October 2012.]
  • 3
    Webb TR, Slavish J, George RE, et al. Anaplastic lymphoma kinase: role in cancer pathogenesis and small-molecule inhibitor development for therapy. Expert Rev Anticancer Ther. 2009; 9: 331-356.
  • 4
    Camidge DR, Doebele RC. Treating ALK-positive lung cancer—early successes and future challenges. Nat Rev Clin Oncol. 2012; 9: 268-277.
  • 5
    Mano H. Non-solid oncogenes in solid tumors: EML4-ALK fusion genes in lung cancer. Cancer Sci. 2008; 99: 2349-2355.
  • 6
    Palmer RH, Vernersson E, Grabbe C, Hallberg B. Anaplastic lymphoma kinase: signalling in development and disease. Biochem J. 2009; 420: 345-361.
  • 7
    Koivunen JP, Mermel C, Zejnullahu K, et al. EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin Cancer Res. 2008; 14: 4275-4283.
  • 8
    Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007; 448: 561-566.
  • 9
    Jung Y, Kim P, Keum J, et al. Discovery of ALK-PTPN3 gene fusion from human non-small cell lung carcinoma cell line using next generation RNA sequencing. Genes Chromosomes Cancer. 2012; 51: 590-597.
  • 10
    Togashi Y, Soda M, Sakata S, et al. KLC1-ALK: a novel fusion in lung cancer identified using a formalin-fixed paraffin-embedded tissue only [serial online]. PLoS One. 2012; 7: e31323.
  • 11
    Rikova K, Guo A, Zeng Q, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007; 131: 1190-1203.
  • 12
    Takeuchi K, Choi YL, Togashi Y, et al. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res. 2009; 15: 3143-3149.
  • 13
    Mano H. ALKoma: a cancer subtype with a shared target. Cancer Discov. 2012; 2: 495-502.
  • 14
    Choi YL, Takeuchi K, Soda M, et al. Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer. Cancer Res. 2008; 68: 4971-4976.
  • 15
    Heuckmann JM, Balke-Want H, Malchers F, et al. Differential protein stability and ALK inhibitor sensitivity of EML4-ALK fusion variants. Clin Cancer Res. 2012; 18: 4682-4690.
  • 16
    Morris SW, Kirstein MN, Valentine MB, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science. 1994; 263: 1281-1284.
  • 17
    Le Beau MM, Bitter MA, Larson RA, et al. The t(2;5)(p23;q35): a recurring chromosomal abnormality in Ki-1-positive anaplastic large cell lymphoma. Leukemia. 1989; 3: 866-870.
  • 18
    Shiota M, Fujimoto J, Takenaga M, et al. Diagnosis of t(2;5)(p23;q35)-associated Ki-1 lymphoma with immunohistochemistry. Blood. 1994; 84: 3648-3652.
  • 19
    Gascoyne RD, Lamant L, Martin-Subero JI, et al. ALK-positive diffuse large B-cell lymphoma is associated with Clathrin-ALK rearrangements: report of 6 cases. Blood. 2003; 102: 2568-2573.
  • 20
    Ma Z, Hill DA, Collins MH, et al. Fusion of ALK to the Ran-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor. Genes Chromosomes Cancer. 2003; 37: 98-105.
  • 21
    Pulford K, Lamant L, Morris SW, et al. Detection of anaplastic lymphoma kinase (ALK) and nucleolar protein nucleophosmin (NPM)-ALK proteins in normal and neoplastic cells with the monoclonal antibody ALK1. Blood. 1997; 89: 1394-1404.
  • 22
    Crino L, Kim D, Riely GJ, et al. Initial phase II results with crizotinib in advanced ALK-positive non-small cell lung cancer (NSCLC): PROFILE 1005 [abstract]. J Clin Oncol. 2011; 29( 15S). Abstract 7514.
  • 23
    Perner S, Wagner PL, Demichelis F, et al. EML4-ALK fusion lung cancer: a rare acquired event. Neoplasia. 2008; 10: 298-302.
  • 24
    Sakairi Y, Nakajima T, Yasufuku K, et al. EML4-ALK fusion gene assessment using metastatic lymph node samples obtained by endobronchial ultrasound-guided transbronchial needle aspiration. Clin Cancer Res. 2010; 16: 4938-4945.
  • 25
    Varella-Garcia M, Cho Y, Lu X, et al. ALK gene rearrangements in unselected Caucasians with non-small cell lung carcinoma (NSCLC) [abstract]. J Clin Oncol. 2010; 28( 15S). Abstract 10533.
  • 26
    Camidge DR, Kono SA, Flacco A, et al. Optimizing the detection of lung cancer patients harboring anaplastic lymphoma kinase (ALK) gene rearrangements potentially suitable for ALK inhibitor treatment. Clin Cancer Res. 2010; 16: 5581-5590.
  • 27
    Doebele RC, Pilling AB, Aisner D, et al. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res. 2012; 18: 1472-1482.
  • 28
    Katayama R, Shaw AT, Khan TM, et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers [serial online]. Sci Transl Med. 2012; 4: 120ra117.
  • 29
    Salido M, Pijuan L, Martinez-Aviles L, et al. Increased ALK gene copy number and amplification are frequent in non-small cell lung cancer. J Thorac Oncol. 2011; 6: 21-27.
  • 30
    Khadija K, Auger N, Lueza B, et al. ALK amplification and crizotinib sensitivity in non-small cell lung cancer cell lines and patients report [abstract] J Clin Oncol. 2012; 30( 15S). Abstract 10556.
  • 31
    Camidge DR, Skokan M, Kiatsimkul P, et al. Native and rearranged ALK copy number and rearranged ALK cell count in NSCLC: implications for ALK inhibitor therapy [abstract]. J Clin Oncol. 2012; 30( 15S). Abstract 7534.
  • 32
    Alers JC, Krijtenburg PJ, Vissers KJ, van Dekken H. Effect of bone decalcification procedures on DNA in situ hybridization and comparative genomic hybridization. EDTA is highly preferable to a routinely used acid decalcifier. J Histochem Cytochem. 1999; 47: 703-710.
  • 33
    Arber JM, Weiss LM, Chang KL, Battifora H, Arber DA. The effect of decalcification on in situ hybridization. Mod Pathol. 1997; 10: 1009-1014.
  • 34
    Camidge DR, Theodoro M, Maxson DA, et al. Correlations between the percentage of tumor cells showing an ALK (anaplastic lymphoma kinase) gene rearrangement, ALK signal copy number, and response to crizotinib therapy in ALK fluorescence in situ hybridization-positive nonsmall cell lung cancer. Cancer. 2012; 118: 4486-4494.
  • 35
    Reineke T, Jenni B, Abdou M-T, et al. Ultrasonic decalcification offers new perspectives for rapid FISH, DNA, and RT-PCR analysis in bone marrow trephines, Am J Surg Pathol. 2006; 30: 892-896.
  • 36
    Kim H, Yoo SB, Choe JY, et al. Detection of ALK gene rearrangement in non-small cell lung cancer: a comparison of fluorescence in situ hybridization and chromogenic in situ hybridization with correlation of ALK protein expression. J Thorac Oncol. 2011; 6: 1359-1366.
  • 37
    Takeuchi K, Choi YL, Soda M, et al. Multiplex reverse transcription-PCR screening for EML4-ALK fusion transcripts. Clin Cancer Res. 2008; 14: 6618-6624.
  • 38
    Sanders HR, Li HR, Bruey JM, et al. Exon scanning by reverse transcriptase-polymerase chain reaction for detection of known and novel EML4-ALK fusion variants in non-small cell lung cancer. Cancer Genet. 2011; 204: 45-52.
  • 39
    Danenberg PV, Stephens C, Cooc J, et al. A novel RT-PCR approach to detecting EML4-ALK fusion genes in archival NSCLC tissue [abstract]. J Clin Oncol. 2010; 28( 15S). Abstract 10535.
  • 40
    Hout D, Xue L, Choppa P. Insight ALK Screen, a highly sensitive and specific RT-qPCR first-line screening assay for comprehensive detection of all oncogenic anaplastic lymphoma kinase (ALK) fusions: clinical validation. Paper presented at: 102nd Annual Meeting of the American Association for Cancer Research; April 2-6, 2011; Orlando, FL.
  • 41
    Wong DW, Leung EL, So KK, et al. The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer. 2009; 115: 1723-1733.
  • 42
    Li T, Mack PC, Desai S, et al. Large-scale screening of ALK fusion oncogene transcripts in archival NSCLC tumor specimens using multiplexed RT-PCR assays [abstract]. J Clin Oncol. 2011; 29( 15S). Abstract 10520.
  • 43
    Mitsudomi T, Tomizawa K, Horio Y, Hida T, Yatabe Y. Comparison of high sensitive IHC, FISH, and RT-PCR direct sequencing for detection of ALK translocation in lung cancer [abstract]. J Clin Oncol. 2011; 29( 15S). Abstract 7534.
  • 44
    Mino-Kenudson M, Chirieac LR, Law K, et al. A novel, highly sensitive antibody allows for the routine detection of ALK-rearranged lung adenocarcinomas by standard immunohistochemistry. Clin Cancer Res. 2010; 16: 1561-1571.
  • 45
    Rodig SJ, Mino-Kenudson M, Dacic S, et al. Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the western population. Clin Cancer Res. 2009; 15: 5216-5223.
  • 46
    Yi ES, Boland JM, Maleszewski JJ, et al. Correlation of IHC and FISH for ALK gene rearrangement in non-small cell lung carcinoma: IHC score algorithm for FISH. J Thorac Oncol. 2011; 6: 459-465.
  • 47
    Paik JH, Choe G, Kim H, et al. Screening of anaplastic lymphoma kinase rearrangement by immunohistochemistry in non-small cell lung cancer: correlation with fluorescence in situ hybridization. J Thorac Oncol. 2011; 6: 466-472.
  • 48
    Park HS, Lee JK, Kim D-W, et al. Immunohistochemical screening for anaplastic lymphoma kinase (ALK) rearrangement in advanced non-small cell lung cancer patients. Lung Cancer. 2012; 77: 288-292.
  • 49
    McLeer-Florin A, Moro-Sibilot D, Melis A, et al. Dual IHC and FISH testing for ALK gene rearrangement in lung adenocarcinomas in a routine practice: a French study. J Thorac Oncol. 2012; 7: 348-354.
  • 50
    Camidge DR, Hirsch FR, Varella-Garcia M, Franklin WA. Finding ALK-positive lung cancer: what are we really looking for? J Thorac Oncol. 2011; 6: 411-413.
  • 51
    Goldstein NS, Hewitt SM, Taylor CR, Yaziji H, Hicks DG; Members of Ad-Hoc Committee on Immunohistochemistry Standardization. Recommendations for improved standardization of immunohistochemistry. Appl Immunohistochem Mol Morphol. 2007; 15: 124-133.
  • 52
    Ridolfi RL, Jamehdor MR, Arber JM. HER-2/neu testing in breast carcinoma: a combined immunohistochemical and fluorescence in situ hybridization approach. Mod Pathol. 2000; 13: 866-873.
  • 53
    Wolff AC, Hammond ME, Schwartz JN, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med. 2007; 131: 18-43.
  • 54
    Paik S, Bryant J, Tan-Chiu E, et al. Real-world performance of HER2 testing—National Surgical Adjuvant Breast and Bowel Project experience. J Natl Cancer Inst. 2002; 94: 852-854.
  • 55
    Perez EA, Suman VJ, Davidson NE, et al. HER2 testing by local, central, and reference laboratories in specimens from the North Central Cancer Treatment Group N9831 Intergroup Adjuvant Trial. J Clin Oncol. 2006; 24: 3032-3038.
  • 56
    Dowsett M, Bartlett J, Ellis IO, et al. Correlation between immunohistochemistry (HercepTest) and fluorescence in situ hybridization (FISH) for HER-2 in 426 breast carcinomas from 37 centres. J Pathol. 2003; 199: 418-423.
  • 57
    Capelletti M, Lipson D, Otto G, et al. Discovery of recurrent KIF5B-RET fusions and other targetable alterations from clinical NSCLC specimens [abstract]. J Clin Oncol. 2012; 30(15S). Abstract 7510.
  • 58
    Ross JS, Lipson D, Sheehan CE, et al. Use of next-generation sequencing (NGS) to detect a novel ALK fusion and a high frequency of other actionable alterations in colorectal cancer (CRC) [abstract]. J Clin Oncol. 2012; 30(15S). Abstract 3533.
  • 59
    Ross JS, Lipson D, Yelensky R, et al. Comprehensive next-generation sequencing for clinically actionable mutations from formalin-fixed cancer tissues [abstract]. J Clin Oncol. 2011; 29( 15S). Abstract 10564.
  • 60
    Lipson D, Capelletti M, Yelensky R, et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med. 2012; 18: 382-384.
  • 61
    Atherly AJ, Camidge DR. The cost-effectiveness of screening lung cancer patients for targeted drug sensitivity markers. Br J Cancer. 2012; 106: 1100-1106.
  • 62
    Tran B, Dancey JE, Kamel-Reid S, et al. Cancer genomics: technology, discovery, and translation. J Clin Oncol. 2012; 30: 647-660.
  • 63
    College of American Pathologists, International Association for the Study of Lung Cancer, Association for Molecular Pathology. Lung Cancer Biomarkers Guideline Draft Recommendations. Northfield, IL: College of American Pathologists; 2011.