• 1
    Dey P. Role of ancillary techniques in diagnosing and subclassifying non-Hodgkin's lymphomas on fine needle aspiration cytology. Cytopathology. 2006; 17: 275-287.
  • 2
    Robins DB, Katz RL, Swan F Jr, Atkinson EN, Ordonez NG, Huh YO. Immunotyping of lymphoma by fine-needle aspiration. A comparative study of cytospin preparations and flow cytometry. Am J Clin Pathol. 1994; 101: 569-576.
  • 3
    Zardawi IM, Jain S, Bennet G. Flow-cytometric algorithm on fine-needle aspirates for the clinical workup of patients with lymphoadenopathy. Diagn Cytopathol. 1998; 19: 274-278.
  • 4
    Landgren O, Porwit MacDonald A, Tani E. A prospective comparison of fine-needle aspiration cytology and histopathology in the diagnosis and classification of lymphomas. Hematol J. 2004; 5: 69-76.
  • 5
    Zeppa P, Marino G, Troncone G, et al. Fine-needle cytology and flow cytometry immunophenotyping and subclassification of non-Hodgkin lymphoma. A critical review of 307 cases with technical suggestions. Cancer (Cancer Cytopathol). 2004; 102: 55-65.
  • 6
    Bangerter M, Brudler O, Heinrich B, Griesshamnuer M. Fine needle aspiration cytology and flow cytometry in the diagnosis and subclassification of non-Hodgkin's lymphoma based on the World Health Organization classification. Acta Cytol. 2007; 51: 390-398.
  • 7
    Wakely PE Jr. Fine-needle aspiration cytopathology in diagnosis and classification of malignant lymphoma: accurate and reliable? Diagn Cytopathol. 2000; 22: 120-125.
  • 8
    Cartagena N Jr, Katz RL, Hirsch-Ginsberg C, Childs CC, Ordonez NG, Cabanillas F. Accuracy of diagnosis of malignant lymphoma by combining fine-needle aspiration cytomorphology with immunocytochemistry and in selected cases, Southern blotting of aspirated cells: a tissue-controlled study of 86 patients. Diagn Cytopathol. 1992; 8: 456-464.
  • 9
    Zeppa P, Vigliar E, Cozzolino I, et al. Fine needle aspiration cytology and flow cytometry immunophenotyping of non-Hodgkin lymphoma: can we do better? Cytopathology. 2010; 21: 300-310.
  • 10
    da Cunha Santos G, Ko HM, Geddie WR, et al. Targeted use of fluorescence in situ hybridization (FISH) in cytospin preparations: results of 298 fine needle aspirates of B-cell non-Hodgkin lymphoma. Cancer (Cancer Cytopathol). 2010; 118: 250-258.
  • 11
    Zhang S, Abreo F, Lowery-Nordberg M, Veillon DM, Cotelingam JD. The role of fluorescence in situ hybridization and polymerase chain reaction in the diagnosis and classification of lymphoproliferative disorders on fine-needle aspiration. Cancer (Cancer Cytopathol). 2010; 118: 105-112.
  • 12
    Monaco SE, Teot LA, Felgar RE, Surti U, Cai G. Fluorescence in situ hybridization studies on direct smears: an approach to enhance the fine-needle aspiration biopsy diagnosis of B-cell non-Hodgkin lymphomas. Cancer (Cancer Cytopathol). 2009; 117: 338-348.
  • 13
    Caraway NP, Thomas E, Khanna A, et al. Chromosomal abnormalities detected by multicolor fluorescence in situ hybridization in fine-needle aspirates from patients with small lymphocytic lymphoma are useful for predicting survival. Cancer (Cancer Cytopathol). 2008; 114: 315-322.
  • 14
    Richmond J, Bryant R, Trotman W, Beatty B, Lunde J. FISH detection of t(14;18) in follicular lymphoma on Papanicolaou-stained archival cytology slides. Cancer (Cancer Cytopathol). 2006; 108: 198-204.
  • 15
    Kishimoto K, Kitamura T, Fujita K, Tate G, Mitsuya T. Cytologic differential diagnosis of follicular lymphoma grades 1 and 2 from reactive follicular hyperplasia: cytologic features of fine-needle aspiration smears with Pap stain and fluorescence in situ hybridization analysis to detect t(14;18)(q32;q21) chromosomal translocation. Diagn Cytopathol. 2006; 34: 11-17.
  • 16
    Caraway NP, Gu J, Lin P, Romaguera JE, Glassman A, Katz R. The utility of interphase fluorescence in situ hybridization for the detection of the translocation t(11;14)(q13;q32) in the diagnosis of mantle cell lymphoma on fine-needle aspiration specimens. Cancer (Cancer Cytopathol). 2005; 105: 110-118.
  • 17
    Safley AM, Buckley PJ, Creager AJ, et al. The value of fluorescence in situ hybridization and polymerase chain reaction in the diagnosis of B-cell non-Hodgkin lymphoma by fine-needle aspiration. Arch Pathol Lab Med. 2004; 128: 1395-1403.
  • 18
    Swerdlow SH, Campo E, Harris NL, et al, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Vol 2. Lyon, France: IARC; 2008.
  • 19
    Nagel I, Akasaka T, Klapper W, et al. Identification of the gene encoding cyclin E1 (CCNE1) as a novel IGH translocation partner in t(14;19)(q32;q12) in diffuse large B-cell lymphoma. Haematologica. 2009; 94: 1020-1023.
  • 20
    Fenton JA, Schuuring E, Barrans SL, et al. t(3;14)(p14;q32) results in aberrant expression of FOXP1 in a case of diffuse large B-cell lymphoma. Genes Chromosomes Cancer. 2006; 45: 164-168.
  • 21
    Cavazzini F, Hernandez JA, Gozzetti A, et al. Chromosome 14q32 translocations involving the immunoglobulin heavy chain locus in chronic lymphocytic leukaemia identify a disease subset with poor prognosis. Br J Haematol. 2008; 142: 529-537.
  • 22
    Aoun P, Blair HE, Smith LM, et al. Fluorescence in situ hybridization detection of cytogenetic abnormalities in B-cell chronic lymphocytic leukemia/small lymphocytic lymphoma. Leuk Lymphoma. 2004; 45: 1595-1603.
  • 23
    Baro C, Salido M, Domingo A, et al. Translocation t(9;14)(p13;q32) in cases of splenic marginal zone lymphoma. Haematologica. 2006; 91: 1289-1291.
  • 24
    Tsai AG, Lu Z, Lieber MR. The t(14;18)(q32;q21)/IGH-MALT1 translocation in MALT lymphomas is a CpG-type translocation, but the t(11;18)(q21;q21)/API2-MALT1 translocation in MALT lymphomas is not. Blood. 2010; 115: 3640-3641.
  • 25
    Streubel B, Vinatzer U, Lamprecht A, Raderer M, Chott A. T(3;14)(p14.1;q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma. Leukemia. 2005; 19: 652-658.
  • 26
    Bergsagel PL, Kuehl WM. Chromosome translocations in multiple myeloma. Oncogene. 2001; 20: 5611-5622.
  • 27
    Berget E, Helgeland L, Molven A, Vintermyr OK. Detection of clonality in follicular lymphoma using formalin-fixed, paraffin-embedded tissue samples and BIOMED-2 immunoglobulin primers. J Clin Pathol. 2011; 64: 37-41.
  • 28
    van Dongen JJ, Langerak AW, Bruggemann M, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003; 17: 2257-2317.
  • 29
    Young NA, Al-Saleem T. Diagnosis of lymphoma by fine-needle aspiration cytology using the revised European-American classification of lymphoid neoplasms. Cancer (Cancer Cytopathol). 1999; 87: 325-345.
  • 30
    Nicol TL, Silberman M, Rosenthal DL, Borowitz MJ. The accuracy of combined cytopathologic and flow cytometric analysis of fine-needle aspirates of lymph nodes. Am J Clin Pathol. 2000; 114: 18-28.
  • 31
    Siebert JD, Weeks MLT, List LW, et al. Utility of flow cytometry immunophenotyping for the diagnosis and classification of lymphoma in community hospital clinical needle aspiration/biopsies. Arch Pathol Lab Med. 2000; 124: 1792-1799.
  • 32
    Dong HY, Harris NL, Preffer FI, Pitman MB. Fine-needle aspiration biopsy in the diagnosis and classification of primary and recurrent lymphoma: a retrospective analysis of the utility of cytomorphology and flow cytometry. Mod Pathol. 2001; 14: 472-481.
  • 33
    Kaleem Z, White G, Vollmer RT. Critical analysis and diagnostic usefulness of limited immunophenotyping of B-cell non-Hodgkin lymphomas by flow cytometry. Am J Clin Pathol. 2001; 115: 136-142.
  • 34
    Young NA, Al-Saleem TI, Ehya H, Smith MR. Utilization of fine-needle aspiration cytology and flow cytometry in the diagnosis and subclassification of primary and recurrent lymphoma. Cancer (Cancer Cytopathol). 1998; 84: 252-261.
  • 35
    Jeffers MD, Milton J, Herriot R, McKean M. Fine needle aspiration cytology in the investigation of non-Hodgkin's lymphoma. J Clin Pathol. 1998; 51: 189-196.
  • 36
    Meda BA, Buss DH, Woodruff RD, et al. Diagnosis and subclassification of primary and recurrent lymphoma. The usefulness and limitations of combined fine-needle aspiration cytomorphology and flow cytometry. Am J Clin Pathol. 2000; 113: 688-699.
  • 37
    Bentz JS, Rowe LR, Anderson SR, Gupta PK, McGrath CM. Rapid detection of the t(11;14) translocation in mantle cell lymphoma by interphase fluorescence in situ hybridization on archival cytopathologic material. Cancer (Cancer Cytopathol). 2004; 102: 124-131.
  • 38
    Gong Y, Caraway N, Gu J, et al. Evaluation of interphase fluorescence in situ hybridization for the t(14;18)(q32;q21) translocation in the diagnosis of follicular lymphoma on fine-needle aspirates: a comparison with flow cytometry immunophenotyping. Cancer (Cancer Cytopathol). 2003; 99: 385-393.
  • 39
    Caraway NP, Du Y, Zhang HZ, Hayes K, Glassman AB, Katz RL. Numeric chromosomal abnormalities in small lymphocytic and transformed large cell lymphomas detected by fluorescence in situ hybridization of fine-needle aspiration biopsies. Cancer (Cancer Cytopathol). 2000; 90: 126-132.
  • 40
    Elkins CT, Wakely PE Jr. Cytopathology of “double-hit” non-Hodgkin lymphoma. Cancer (Cancer Cytopathol). 2011; 119: 263-271.
  • 41
    van Rijk A, Mason D, Jones M, et al. Translocation detection in lymphoma diagnosis by split-signal FISH: a standardised approach. J Hematop. 2008; 1: 119-126.
  • 42
    van der Burg M, Poulsen TS, Hunger SP, et al. Split-signal FISH for detection of chromosome aberrations in acute lymphoblastic leukemia. Leukemia. 2004; 18: 895-908.
  • 43
    Hwang Y, Lee JY, Mun YC, Seong CM, Chung WS, Huh J. Various patterns of IgH deletion identified by FISH using combined IgH and IgH/CCND1 probes in multiple myeloma and chronic lymphocytic leukemia. Int J Lab Hematol. 2011; 33: 299-304.
  • 44
    Bernicot I, Douet-Guilbert N, Le Bris MJ, Herry A, Morel F, De Braekeleer M. Molecular cytogenetics of IGH rearrangements in non-Hodgkin B-cell lymphoma. Cytogenet Genome Res. 2007; 118: 345-352.
  • 45
    Jorgensen JL. State of the Art Symposium: flow cytometry in the diagnosis of lymphoproliferative disorders by fine-needle aspiration. Cancer (Cancer Cytopathol). 2005; 105: 443-451.
  • 46
    Katz RL. Modern approach to lymphoma diagnosis by fine-needle aspiration: restoring respect to a valuable procedure. Cancer (Cancer Cytopathol). 2005; 105: 429-431.
  • 47
    Roth J, Daus H, Trumper L, Gause A, Salamon-Looijen M, Pfreundschuh M. Detection of immunoglobulin heavy-chain gene rearrangement at the single-cell level in malignant lymphomas: no rearrangement is found in Hodgkin and Reed-Sternberg cells. Int J Cancer. 1994; 57: 799-804.