Calcium-binding proteins map the postnatal development of rat vestibular nuclei and their vestibular and cerebellar projections

Authors

  • Julien Puyal,

    Corresponding author
    1. INSERM U432, Neurobiologie et Développement du Système Vestibulaire, Université de Montpellier II, CP089, Montpellier 34095 Cedex 5, France
    • INSERM U432, Université de Montpellier II, CP089, Montpellier 34095 Cedex 5, France
    Search for more papers by this author
  • Gina Devau,

    1. INSERM U432, Neurobiologie et Développement du Système Vestibulaire, Université de Montpellier II, CP089, Montpellier 34095 Cedex 5, France
    Search for more papers by this author
  • Stephanie Venteo,

    1. INSERM U432, Neurobiologie et Développement du Système Vestibulaire, Université de Montpellier II, CP089, Montpellier 34095 Cedex 5, France
    Search for more papers by this author
  • Nathalie Sans,

    1. Laboratory of Neurochemistry, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892
    Search for more papers by this author
  • Jacqueline Raymond

    1. INSERM U432, Neurobiologie et Développement du Système Vestibulaire, Université de Montpellier II, CP089, Montpellier 34095 Cedex 5, France
    Search for more papers by this author

Abstract

We investigated whether three calcium-binding proteins, calretinin, parvalbumin, and calbindin, could identify specific aspects of the postnatal development of the rat lateral (LVN) and medial (MVN) vestibular nuclei and their vestibular and cerebellar connections. Calretinin levels in the vestibular nuclei, increased significantly between birth and postnatal day (P) 45. In situ hybridization and immunocytochemical staining showed that calretinin-immunoreactive neurons were mostly located in the parvocellular MVN at birth and that somatic and dendritic growth occurred between birth and P14. During the first week, parvalbumin-immunoreactive fibers and endings were confined to specific areas, i.e., the ventral LVN and magnocellular MVN, and identified exclusively the maturation of the vestibular afferents. Calbindin was located within the dorsal LVN and the parvocellular MVN and identified the first arrival of the corticocerebellar afferents. From the second week, in addition to labeling vestibular afferents in their specific target areas, parvalbumin was also found colocalized with calbindin in mature Purkinje cell afferents. Thus, the specific spatiotemporal distribution of parvalbumin and calbindin could correspond to two successive phases of synaptic remodeling involving integration of the vestibular sensory messages and their cerebellar control. On the basis of the sequence of distribution patterns of these proteins during the development of the vestibular nuclei, calretinin is an effective marker for neuronal development of the parvocellular MVN, parvalbumin is a specific marker identifying maturation of the vestibular afferents and endings, and calbindin is a marker of the first appearance and development of Purkinje cell afferents. J. Comp. Neurol. 451:374–391, 2002. © 2002 Wiley-Liss, Inc.

Ancillary