• cochlear nucleus;
  • superior olivary complex;
  • lateral lemniscus;
  • inferior colliculus


Anatomical and electrophysiological evidence suggests that serotonin alters the processing of sound in the auditory brainstem of many mammalian species. The Mexican free-tailed bat is a hearing specialist, like other microchiropteran bats. At the same time, many aspects of its auditory brainstem are similar to those in other mammals. This dichotomy raises an interesting question regarding the serotonergic innervation of the bat auditory brainstem: Is the serotonergic input to the auditory brainstem similar in bats and other mammals, or are there specializations in the serotonergic innervation of bats that may be related to their exceptional hearing capabilities? To address this question, we immunocytochemically labeled serotonergic fibers in the brainstem of the Mexican free-tailed bat, Tadarida brasiliensis. We found many similarities in the pattern of serotonergic innervation of the auditory brainstem in Tadarida compared with other mammals, but we also found two striking differences. Similarities to staining patterns in other mammals included a higher density of serotonergic fibers in the dorsal cochlear nucleus and in granule cell regions than in the ventral cochlear nucleus, a high density of fibers in some periolivary nuclei of the superior olive, and a higher density of fibers in peripheral regions of the inferior colliculus compared with its core. The two novel features of serotonergic innervation in Tadarida were a high density of fibers in the fusiform layer of the dorsal cochlear nucleus relative to surrounding layers and a relatively high density of serotonergic fibers in the low-frequency regions of the lateral and medial superior olive. J. Comp. Neurol. 435:78–88, 2001. © 2001 Wiley-Liss, Inc.