Taurine-, aspartate- and glutamate-like immunoreactivity identifies chemically distinct subdivisions of Kenyon cells in the cockroach mushroom body

Authors


Abstract

The lobes of the mushroom bodies of the cockroach Periplaneta americana consist of longitudinal modules called laminae. These comprise repeating arrangements of Kenyon cell axons, which like their dendrites and perikarya have an affinity to one of three antisera: to taurine, aspartate, or glutamate. Taurine-immunopositive laminae alternate with immunonegative ones. Aspartate-immunopositive Kenyon cell axons are distributed across the lobes. However, smaller leaf-like ensembles of axons that reveal particularly high affinities to anti-aspartate are embedded within taurine-positive laminae and occur in the immunonegative laminae between them. Together, these arrangements reveal a complex architecture of repeating subunits whose different levels of immunoreactivity correspond to broader immunoreactive layers identified by sera against the neuromodulator FMRFamide. Throughout development and in the adult, the most posterior lamina is glutamate immunopositive. Its axons arise from the most recently born Kenyon cells that in the adult retain their juvenile character, sending a dense system of collaterals to the front of the lobes. Glutamate-positive processes intersect aspartate- and taurine-immunopositive laminae and are disposed such that they might play important roles in synaptogenesis or synapse modification. Glutamate immunoreactivity is not seen in older, mature axons, indicating that Kenyon cells show plasticity of neurotransmitter phenotype during development. Aspartate may be a universal transmitter substance throughout the lobes. High levels of taurine immunoreactivity occur in broad laminae containing the high concentrations of synaptic vesicles. J. Comp. Neurol. 439:352–367, 2001. © 2001 Wiley-Liss, Inc.

Ancillary