• basal ganglia;
  • ultrastructure;
  • immunogold method;
  • GABA;
  • glia


Both subtypes of group I metabotropic glutamate receptor, mGluR1 and mGluR5, are expressed postsynaptically in neurons of the subthalamic nucleus (STN), and their activation induces different physiological responses. To test whether these effects could be explained by a differential localization of the two group I mGluRs, we analyzed the subcellular and subsynaptic distribution of mGluR1a and mGluR5 in the monkey STN. Double-immunofluorescence and light microscopic analyses revealed that both group I mGluR subtypes were strongly coexpressed in the neuropil and neuronal perikarya. Astrocytic perikarya exhibited intense mGluR1a, but no detectable mGluR5, immunoreactivity. At the electron microscopic level, immunoperoxidase labeling for both mGluR1a and mGluR5 was localized mainly in dendrites. A significant proportion of the total pool of mGluR1a-immunoreactive elements was accounted for by glial cell processes, whereas glial cell labeling was much less frequently encountered in sections immunostained for mGluR5. Preembedding immunogold labeling in STN dendrites revealed that 60–70% of the gold labeling for both mGluR subtypes was intracellular, whereas 30–40% was apposed to the plasma membrane. Of the plasma membrane-apposed particles, more than 90% were extrasynaptic; fewer than 10% were associated with symmetric or asymmetric synapses. Most of the synapse-associated labeling was found at the edges of both asymmetric and symmetric postsynaptic specializations. Some extrasynaptic gold particles were aggregated on parts of the plasma membrane tightly apposed by glial processes. These findings demonstrate that mGluR1a and mGluR5 exhibit a similar pattern of subsynaptic localization in monkey STN neurons, with both receptor subtypes exhibiting substantial extrasynaptic and perisynaptic localization. J. Comp. Neurol. 474:589–602, 2004. © 2004 Wiley-Liss, Inc.