SEARCH

SEARCH BY CITATION

Keywords:

  • zebrafish;
  • retina;
  • ultrastructure;
  • developmental lag;
  • dose and temporal response;
  • volumetric measurements

Abstract

Approximately 90% of fetal alcohol syndrome cases are accompanied by ocular abnormalities. The zebrafish (Danio rerio) is a well-known developmental model that provides an opportunity for better understanding the histological and cytological effects of developmental exposure to ethanol on the vertebrate eye. The purpose of the present study was to determine the gross, microscopic, and ultrastructual effects of developmental exposure to ethanol in the zebrafish model. Eggs were obtained from WT outbred zebrafish and exposed to 0%, 0.1%, 0.2%, 0.4%, 0.5%, or 1.0% (v/v) ethanol to assess viability and the effect of dose and duration of exposure on eye size. Light and electron microscopy were performed on ethanol-treated and control larvae. Results showed that ethanol treatment decreased viability by about 20% at concentrations of 0.1–0.5% ethanol and by 50% at 1.0% ethanol. Ethanol-related decreases in eye size were recorded at 6 days postfertilization (dpf) and were dose dependent. There were significant decreases in the volumes of the photoreceptor, inner nuclear, and ganglionic layers and in the lens of 9 dpf ethanol-exposed compared with control larvae. Ultrastructural examination showed signs of developmental lags in the ethanol-treated fish as well as abnormal retinal apoptosis in the 6 dpf ethanol-treated larvae compared with their controls. These results demonstrate that the developing zebrafish eye is sensitive to perturbation with ethanol and displays some of the eye deficits present in fetal alcohol syndrome. J. Comp. Neurol. 502:497–506, 2007. © 2007 Wiley-Liss, Inc.