• spatial integration;
  • hand representation;
  • intrinsic connections;
  • corticocortical connections


The ventral posterior nucleus of thalamus sends highly segregated inputs into each digit representation in area 3b of primary somatosensory cortex. However, the spatial organization of the connections that link digit representations of areas 3b with other somatosensory areas is less understood. Here we examined the cortical inputs to individual digit representations of area 3b in four squirrel monkeys and one prosimian galago. Retrograde tracers were injected into neurophysiologically defined representations of individual digits of area 3b. Cortical tissues were cut parallel to the surface in some cases and showed that feedback projections to individual digits overlapped extensively in the hand representations of areas 3b, 1, and parietal ventral (PV) and second somatosensory (S2) areas. Other regions with overlapping populations of labeled cells included area 3a and primary motor cortex (M1). The results were confirmed in other cases in which the cortical tissues were cut in the coronal plane. The same cases also showed that cells were primarily labeled in the infragranular and supragranular layers. Thus, feedback projections to individual digit representations in area 3b mainly originate from multiple digits and other portions of hand representations of areas 3b, 1, PV, and S2. This organization is in stark contrast to the segregated thalamocortical inputs, which originate in single digit representations and terminate in the matching digit representation in the cortex. The organization of feedback connections could provide a substrate for the integration of information across the representations of adjacent digits in area 3b. J. Comp. Neurol. 521:3768–3790, 2013. © 2013 Wiley Periodicals, Inc.