• facial motor nucleus;
  • ear movements;
  • retrograde horseradish peroxidase


The location and number of motoneurons to individual pinna muscles were determined by retrograde transport of horseradish peroxidase in rat and flying fox. The degree of ear mobility differs considerably between these species in that rats perform simpler ear movements while flying foxes move their pinnae in a sophisticated way. Five pinna muscles were investigated in each species. Motoneurons lay within the medial subdivision of the facial motor nucleus extending over its entire rostrocaudal length. They were topographically organized; however, a somatotopic order could not be observed. With one exception homologous pinna muscles were represented in corresponding areas in both species, supporting the idea of a common representation of ear muscles in mammals. In rat, motoneuron pools overlapped considerably, whereas in flying fox overlap was minute. A total of 1,110 and 1,646 motoneurons were labeled in rat and flying fox, respectively. We conclude that the higher number of pinna motoneurons in the latter species in addition to the more clear-cut topography provide the structural substrates that underlie differences in the quality of ear movements as seen in bats vis-a-vis other mammals.