• axon outgrowth;
  • neurotoxin;
  • lateral geniculate nucleus;
  • plasticity;
  • retinal ganglion cells


Anterograde tracing with horseradish peroxidase (HRP) was used to compare the organization of retinotectal projections in normal adult hamsters and in animals that sustained subcutaneous injections of the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) on the day of birth. Neonatal injection of this neurotoxin decreases the density of the serotoninergic (5-HT) innervation of the cerebral and cerebellar cortices, but increases the density of these fibers in the brainstem including the superior colliculus (SC). Analysis of tissue from the retinorecipient laminae of the SC by high-pressure liquid chromatography indicated that these lesions increased the amount of 5-HT in the adult SC by 47%. The increased serotoninergic innervation of SC was associated with a marked change in the distribution of the uncrossed retinotectal projection. In normal adult hamsters, fibers from the ipsilateral eye form dense clusters in the lowermost stratum griseum superficiale (SGS) and stratum opticum (SO). A small number of uncrossed fibers are also visible in the more caudal portions of these layers. In the animals that sustained neonatal 5,7-DHT injections, uncrossed retinotectal fibers formed a nearly continuous band in rostral SO and lower SGS, and numerous labeled fibers were present in the caudal SC, primarily in the SO. Neonatal treatment with 5,7-DHT also produced alterations in the crossed retinotectal pathway and in the crossed and uncrossed retinogeniculate projections. These results indicate that the 5-HT input to the developing brainstem may strongly influence the development of retinofugal projections. © 1993 Wiley-Liss, Inc.