• auditory system;
  • 5-hydroxytryptamine;
  • immunohistochemistry;
  • neuroanatomy


The distribution of serotoninergic fibers in the guinea pig cochlear nucleus was studied with serotonin immunohistochemistry. In addition, the origin of the serotoninergic fibers was determined by combining the retrograde transport of wheat germ agglutinin-apohorseradish peroxidase (gold conjugated) with serotonin immunohistochemistry.

Immunoreactivity was present in varicose and nonvaricose fibers that were unevenly distributed throughout the cochlear nucleus. The fibers were most prominent in the superficial layers of the dorsal cochlear nucleus and the anterior spherical cell area of the anteroventral cochlear nucleus. Although less prominent, serotonin-positive fibers were also present in the remaining part of the anteroventral cochlear nucleus and the posteroventral cochlear nucleus. A few positive fibers were present in the auditory nerve root and the dorsal and intermediate acoustic stiae. Double-labeled cells were found throughout the rostral- caudal extent of the serotoninergic system from the caudal linear nucleus to the nucleus raphe pallidus. However, most were confined to the dorsal (52%) and median (18%) raphe nuclei. Some serotoninergic cell groups contained retrogradely labeled cells that were not serotonin immunoreactive, indicating nonauditory afferents to cochlear nucleus containing other neurotransmitter substances.

Serotonin may tonically modulate auditory processing within the cochlear nucleus as well as influence certain ascending auditory pathways. Most of the serotonin in the cochlear nucleus comes from superior raphe nuclei that also project to basal ganglia motor systems and limbic strctures. Therefore, the effect of serotonin on the cochlear nucleus may be related to level of arousal or behavioral state. © 1995 Willy-Liss, Inc.