SEARCH

SEARCH BY CITATION

Keywords:

  • auditory pathways;
  • retrograde transport;
  • cochlear nucleus;
  • superior olivary complex;
  • periolivary nuclei

Abstract

The nuclei of the lateral lemniscus in the echolocating bat, Eptesicus fuscus, are large and highly differentiated. In each nucleus, different characteristic response properties predominate. To determine whether the dissimilar response properties are due in part to dfferential ascending input, we examined the retrograde transport from small deposits of horseradish peroxidase (HRP) or HRP conjugated with wheat germ agglutinin (WGA-HRP) in the nuclei of the lateral lemniscus.

The intermediate nucleus (INLL) and the two divisions of the ventral nucleus (VNLL) receive almost exclusively monaural input from the anteroventral and posteroventral cochlear nuclei and from the medial nucleus of the trapezoid body. Lesser inputs originate in the lateral nucleus of the trapezoid body and the ventral periolivary area. Although the three monaural nuclei of the lateral lemniscus all receive input from the same set of nuclei, and from the same identified cell types in the cochlear nucleus, there is a difference in the relative proportions of input from these sources. The dorsal nucleus (DNLL) receives input mostly from binaural structures, the lateral and medial superior olives and the contralateral DNLL, with only a minor projection from the coc hlear nucleus. The lateral and medial superior olives project bilaterally; the bilateral projection from the medial superior olive is unusual in that it is found in only a few mammalian species.

The results show a segregated pattern of binaural projections to DNLL and monaural projections to INLL and VNLL that is consistent with the binaural response properties found in DNLL and the exclusively monaural response properties found in INLL and VNLL. The differences in response properties between monaural nuclei, however, are not due to input from different nuclei or cell types but may be influenced by differing magnitudes of the constituent ascending projections. © 1995 Wiley-Liss, Inc.