• Mindlin–Reissner plates;
  • MITC4 element;
  • smoothed finite elements;
  • stabilized method;
  • shear locking;
  • free vibration


A free vibration analysis of Mindlin–Reissner plates using the stabilized smoothed finite element method is studied. The bending strains of the MITC4 and STAB elements are incorporated with a cell-wise smoothing operation to give new proposed elements, the mixed interpolation and smoothed curvatures (MISCk) and SMISCk elements. The corresponding bending stiffness matrix is computed along the boundaries of the smoothing elements (smoothing cells). Note that shearing strains and the shearing stiffness matrix of the proposed elements are unchanged from the original elements, the MITC4 and STAB elements. It is confirmed by numerical tests that the present method is free of shear locking and has the marginal improvements compared with the original elements. Copyright © 2008 John Wiley & Sons, Ltd.