Get access

Textural versus electrostatic exclusion-enrichment effects in the effective chemical transport within the cortical bone: A numerical investigation

Authors

  • T. Lemaire,

    Corresponding author
    1. Université Paris Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 61 Avenue du Général de Gaulle, 94010 Créteil, France
    • Correspondence to: T. Lemaire, Université Paris Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 61 Avenue du Général de Gaulle, 94010 Créteil, France.

      E-mail: thibault.lemaire@univ-paris-est.fr

    Search for more papers by this author
  • J. Kaiser,

    1. Université Paris Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 61 Avenue du Général de Gaulle, 94010 Créteil, France
    Search for more papers by this author
  • S. Naili,

    1. Université Paris Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 61 Avenue du Général de Gaulle, 94010 Créteil, France
    Search for more papers by this author
  • V. Sansalone

    1. Université Paris Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 61 Avenue du Général de Gaulle, 94010 Créteil, France
    Search for more papers by this author

SUMMARY

Interstitial fluid within bone tissue is known to govern the remodelling signals’ expression. Bone fluid flow is generated by skeleton deformation during the daily activities. Due to the presence of charged surfaces in the bone porous matrix, the electrochemical phenomena occurring in the vicinity of mechanosensitive bone cells, the osteocytes, are key elements in the cellular communication. In this study, a multiscale model of interstitial fluid transport within bone tissues is proposed. Based on an asymptotic homogenization method, our modelling takes into account the physicochemical properties of bone tissue. Thanks to this multiphysical approach, the transport of nutrients and waste between the blood vessels and the bone cells can be quantified to better understand the mechanotransduction of bone remodelling. In particular, it is shown that the electrochemical tortuosity may have stronger implications in the mass transport within the bone than the purely morphological one.Copyright © 2013 John Wiley & Sons, Ltd.

Ancillary