• 1
    Dalstra M, Huiskes R. Load transfer across the pelvic bone. Journal of Biomechanics 1995; 28(6):71524.
  • 2
    Brown TD, Shaw DT. In vitro contact stress distributions in the natural human hip. Journal of Biomechanics 1983; 16:373384.
  • 3
    Stops A, Wilcox R, Jin Z. Computational modelling of the natural hip: a review of finite element and multibody simulations. Computer Methods in Biomechanics and Biomedical Engineering 2012; 15(9):963979.
  • 4
    Ford JM. The Virtual hip: an anatomically accurate finite element model based on the visible human dataset. Thesis, 2010.
  • 5
    Cilingir AC, Ucar V, Ucar C. Comparison of finite element models of natural hip joint. Journal of Biomechanics 2011; 44(1):5.
  • 6
    Anderson AE, Elli BJ, Maas SA, Weiss JA. Effects of idealized joint geometry on finite element predictions of cartilage contact stresses in the hip. Journal of Biomechanics 2010; 43:13511357.
  • 7
    Arnold AS, Anderson FC, Pandy MG, Delp SL. Muscular contributions to hip and knee extension during the single limb stance phase of normal gait: a framework for investigating the causes of crouch gait. Journal of Biomechanics 2005; 38:21812189.
  • 8
    Sartori M, Farina D, Lloyd DG. Hybrid neuromusculoskeletal modeling. In Converging Clinical and Engineering Research on Neurorehabilitation, Biosystems & Biorobotics, Pons JL, Torricelli D, Pajaro M (eds). Springer-Verlag: Berlin, 2012a; 427430.
  • 9
    Sartori M, Reggiani M, Farina D, Lloyd DG. EMG-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity. PLoS ONE 2012b; 7:111.
  • 10
    Hunter PJ. The IUPS Physiome Project: a framework for computational physiology. Progress in Biophysics and Molecular Biology 2004; 85(2-3):55169.
  • 11
    Winter DA. Biomechanics and Motor Control of Human Movement. John Wiley & Sons: New York, 2004.
  • 12
    Goffe WL, Ferrier GD, Rogers J. Global optimization of statistical functions with simulated annealing. Journal of Econometrics 1994; 60:6599.
  • 13
    Lloyd DG, Besier TF. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. Journal of Biomechanics 2003; 36:765776.
  • 14
    Delp SL, Loan JP, Hoy MG, Zajac FE, Topp EL, Rosen JM. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Transactions on Biomedical Engineering 1990; 37:757767.
  • 15
    Sartori M, Reggiani M, Van Den Bogert AJ, Lloyd DG. Estimation of musculotendon kinematics in large musculoskeletal models using multidimensional B-splines. Journal of Biomechanics 2012c; 45:595601.
  • 16
    Yamaguchi GT, Sawa AGU, Moran DW, Fessler MJ, Winters JM. A survey of human musculotendon actuator parameters. In Multiple Muscle Systems: Biomechanics and Movement Organization, Winters JM, Woo SY (eds). Springer: New York, 1990.
  • 17
    Shim VB, Pitto RP, Streicher RM, Hunter PJ, Anderson IA. Development and validation of patient-specific finite element models of the hemipelvis generated from a sparse CT data set. Journal of Biomechanical Engineering 2008; 130(5):051010-1051010-11.
  • 18
    Hunter P, Smith N, Fernandez J, Tawhai M. Integration from proteins to organs: the IUPS Physiome Project. Mechanisms of Ageing and Development 2005; 126(1):18792.
  • 19
    Fernandez J, Mithraratne P, Thrupp S, Tawhai M, Hunter P. Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomech Model Mechanobiol 2004; 2(3):13955.
  • 20
    Shim V, Boehme J, Vaitl P, Klima S, Josten C, Anderson I. Finite element analysis of acetabular fractures -development and validation with a synthetic pelvis. Journal of Biomechanics 2010; 43(8):16351639.
  • 21
    Dalstra M, Huiskes R, Odgaard A, Erning L. Mechanical and tex- trual properties of pelvic trabecular bone. Journal of Biomechanics 1993; 26:523535.
  • 22
    Fernandez JW, Hunter PJ. An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool. Biomech Model Mechanobiol 2005; 4(1):2038.
  • 23
    Anderson A, Peters C, Tuttle B, Weiss J. Subject-specific finite element models of the pelvis: development, validation and sensitivity studies. ASME Journal of Biomechanical Engineering 2005; 127:364373.
  • 24
    Kempson G. The mechanical properties of articular cartilage. In The Joint and Synovial Fluid, 21 Sokoloff L (ed.), Ch. 5. Academic Press: New York, 1980; 385409.
  • 25
    Ackerman MJ. The visible human project. Proceedings of the IEEE 1998; 86(3):504511.
  • 26
    Wolff J. The Law of Bone Remodeling. Springer: Berlin, Heidelberg, and New York, 1986.
  • 27
    Frost HM. Skeletal structural adaptations to mechanical usage (Satmu).2. Redefining Wolff law - the remodeling problem. Anatomical Record 1990; 226(4):414422.
  • 28
    Anderson AE, Ellis BJ, Maas SA, Peters CL, Weiss JA. Validation of finite element predictions of cartilage contact pressure in the human hip joint. Journal of Biomechanical Engineering 2008; 130(5):10081018.
  • 29
    Phillips A, Pankaj P, Howie C, Usmani A, Simpson A. Finite element modelling of the pelvis: inclusion of muscular and ligamentous boundary conditions. Medical Engineering & Physics 2007; 29(7):73948.
  • 30
    Rybicki EF, Simonen FA, Weis EB. On the mathematical analysis of stress in the human femur. Journal of Biomechanics 1972; 5:203215.
  • 31
    Scholten R, Röhrle H, Sollbach W. Analysis of stress distribution in natural and artificial hip joints using the finite element method. South African Mechanical Engineer 1978; 28:220225.
  • 32
    Tepic S, Macirowski T, Mann RW. Computer simulation of interarticular fluid flow. In Proceedings of the Fourth Meeting of the European Society of Biomechanics, Perren SM, Schneider E (eds). Martinus Nijhoff Publishers: Boston, MA, 1985; 221226.
  • 33
    Ateshian GA, Ellis BJ, Weiss JA. Equivalence between short-time biphasic and incompressible elastic material responses. Journal of Biomechanical Engineering 2007; 129(3):405412.
  • 34
    Evans FG. Mechanical Properties of Bone. Springfield: Illinois, USA, 1973.
  • 35
    Currey JD, Brear K, Zioupos P, Reilly GG. Effect of formaldehyde fixation on some mechanical propertis of bovine bone. Biomaterials 1995; 16:12671271.
  • 36
    McElhaney JH, Fogle J, Byars E, Weaver G. Effect of embalming on the mechanical properties of beef bone. Journal of Applied Physiology 1964; 19:12341236.
  • 37
    Ziran BH, Sharkey NA, Smith TS, Wang G, Chapman MW. Modified transverse locking nail fixation of proximal femoral fractures. Clinical Orthopaedics and Related Research 1997; 339:8291.
  • 38
    Edmondston SJ, Singer KP, Day RE, Breidahl PD, Price RI. Formalin fixation effects on vertebral bone density and failure mechanics: an in-vitro study of human and sheep vertebrae. Clinical Biomechanics 1994; 9:175179.
  • 39
    Draper CE, Fredericson M, Gold GE, Besier TF, Delp SL, Beaupré GS, Quon A. Patients with patellofemoral pain exhibit elevated bone metabolic activity at the patellofemoral joint. Journal of Orthopaedic Research 2012; 30(2):209213.