SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Hogberg SM. Modeling nanofiber transport and deposition in human airways. Department of Apllied Physics and Mechanical Engineering, Lulea University of Technology, 2010.
  • 2
    Kleinstreuer C, Zhang Z. Airflow and particle transport in the human respiratory system. Annual Review of Fluid Mechanics, 2010; 42: 301334.
  • 3
    Wininger CW, Heys JJ. Particle transport modeling in pulmonary airways with high-order elements. Mathematical Biosciences 2011; 232(1):1119.
  • 4
    Zhang Z, Kleinstreuer C, Kim CS. Airflow and nanoparticle deposition in a 16-generation tracheobronchial airway model. Annals of Biomedical Engineering 2008; 36(12):20952110.
  • 5
    Zhang Z, Kleinstreuer C, Kim CS. Comparison of analytical and CFD models with regard to micron particle deposition in a human 16-generation tracheobronchial airway model. Journal of Aerosol Science 2009; 40(1):1628.
  • 6
    Li Z, Kleinstreuer C, Zhang Z. Simulation of airflow fields and microparticle deposition in realistic human lung airway models. Part II: particle transport and deposition. European Journal of Mechanics - B/Fluids 2007; 26(5):650668.
  • 7
    Shi H, Kleinstreuer C, Zhang Z, Kim CS. Nanoparticle transport and deposition in bifurcating tubes with different inlet conditions. Physics of Fluids 2004; 16(7):21992213.
  • 8
    Zhang Z, Kleinstreuer C. Airflow structures and nano-particle deposition in a human upper airway model. Journal of Computational Physics 2004; 198(1):178210.
  • 9
    Zhang Z, Kleinstreuer C, Donohue JF, Kim CS. Comparison of micro- and nano-size particle depositions in a human upper airway model. Journal of Aerosol Science 2005; 36(2):211233.
  • 10
    Zhang Z, Kleinstreuer C, Kim CS. Micro-particle transport and deposition in a human oral airway model. Journal of Aerosol Science 2002; 33(12):16351652.
  • 11
    Kleinstreuer C. ‘Effects of asymmetric branch flow rates on aerosol deposition in bifurcating airways’, by Z. Zhang, C. Kleinstreuer and C. S. Kim - Response. Journal of Medical Engineering & Technology 2001; 25(3):127127.
  • 12
    Comer JK, Kleinstreuer C, Kim CS. Flow structures and particle deposition patterns in double-bifurcation airway models. Part 2. Aerosol transport and deposition. Journal of Fluid Mechanics 2001; 435: 5580.
  • 13
    Comer JK, Kleinstreuer C, Zhang Z. Flow structures and particle deposition patterns in double-bifurcation airway models. Part 1. Air flow fields. Journal of Fluid Mechanics 2001; 435: 2554.
  • 14
    Li Z, Kleinstreuer C, Zhang Z. Simulation of airflow fields and microparticle deposition in realistic human lung airway models. Part I: airflow patterns. European Journal of Mechanics - B/Fluids 2007; 26(5):632649.
  • 15
    Liu Y, So RMC, Zhang CH. Modeling the bifurcating flow in a human lung airway. Journal of Biomechanics 2002; 35(4):465473.
  • 16
    Li Z, Kleinstreuer C, Zhang Z. Particle deposition in the human tracheobronchial airways due to transient inspiratory flow patterns. Journal of Aerosol Science 2007; 38(6):625644.
  • 17
    Choi L-T. Simulation of fluid dynamics and particle transport in realistic human airways. School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, 2007.
  • 18
    Kleinstreuer C, Zhang Z, Li Z, Roberts WL, Rojas C. A new methodology for targeting drug-aerosols in the human respiratory system. International Journal of Heat and Mass Transfer 2008; 51(23-24):55785589.
  • 19
    Tronde A. Pulmonary drug absorption. In Pharmacy, Uppsala University, Uppsala, 2002; 186.
  • 20
    Sauret V, Halson RM, Brown IW, Fleming JS, Bailey AG. Study of the three-dimensional geometry of the central conducting airways in man using computed tomographic (CT) images. Journal of Anatomy 2002; 200(2):123134.
  • 21
    Weibel ER. Morphometry of the Human Lung. Academic Press: New York, 1963.
  • 22
    Donea J, Huerta A. Finite Element Method for Flow Problems. John Wiley & Sons Ltd.: Chichester, England, 2003.
  • 23
    Gresho PM, Sani RL, Engelman MS. Incompressible Flow and the Finite Element Method, Vol. 1. John Wiley & Sons Ltd.: Chichester, England, 2000.
  • 24
    Brooks AN, Hughes TJR. Streamline upwind Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering 1982; 32(1-3):199259.
  • 25
    Tezduyar TE, Park YJ. Discontinuity-capturing finite-element formulations for nonlinear convection-diffusion-reaction equations. Computer Methods in Applied Mechanics and Engineering 1986; 59(3):307325.
  • 26
    Tezduyar TE, Osawa Y. Finite element stabilization parameters computed from element matrices and vectors. Computer Methods in Applied Mechanics and Engineering 2000; 190(3-4):411430.
  • 27
    Tezduyar TE. Computation of moving boundaries and interfaces and stabilization parameters. International Journal for Numerical Methods in Fluids 2003; 43(5):555575.
  • 28
    Franca LP, Hauke G, Masud A. Revisiting stabilized finite element methods for the advective-diffusive equation. Computer Methods in Applied Mechanics and Engineering 2006; 195(13-16):15601572.
  • 29
    Rajaraman PK, Vo G, Heys JJ, Hansen G. Comparison of continuous and discontinuous Galerkin finite element methods for parabolic differential equations employing implicit time integration. Submitted.
  • 30
    Kleinstreuer C. Two-Phase Flow : Theory and Applications. Taylor & Francis: New York; London, 2003. xiv.
  • 31
    Tyree C, Allen J. Diffusional particle loss upstream of isokinetic sampling inlets. Aerosol Science and Technology 2004; 38(10):10191026.
  • 32
    Reddy JN. An Introduction to the Finite Element Method, 2nd ed., McGraw-Hill series in mechanical engineering. McGraw-Hill: New York, 1993. xix.
  • 33
    Reddy JN, Gartling DK. The Finite Element Method in Heat Transfer and Fluid Dynamics. Boca Raton: CRC Press, 1994.
  • 34
    Kleinstreuer C, Zhang Z, Li Z. Modeling airflow and particle transport/deposition in pulmonary airways. Respratory Physiology & Neurobiology 2008; 163: 128138.
  • 35
    Hughes TJR, Tezduyar TE. Finite-element methods for 1st-order hyperbolic systems with particular emphasis on the compressible Euler equations. Computer Methods in Applied Mechanics and Engineering 1984; 45(1-3):217284.
  • 36
    Bochev PB, Gunzburger MD, Shadid JN. Stability of the SUPG finite element method for transient advection-diffusion problems. Computer Methods in Applied Mechanics and Engineering 2004; 193(23-26):23012323.
  • 37
    Burman E. Consistent SUPG-method for transient transport problems: stability and convergence. Computer Methods in Applied Mechanics and Engineering 2010; 199(17-20):11141123.
  • 38
    Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR. YZ beta discontinuity capturing for advection-dominated processes with application to arterial drug delivery. International Journal for Numerical Methods in Fluids 2007; 54(6-8):593608.
  • 39
    Hsu MC, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR. Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Computer Methods in Applied Mechanics and Engineering 2010; 199(13-16):828840.
  • 40
    Codina R. Stability analysis of the forward Euler scheme for the convection-diffusion equation using the SUPG formulation in space. International Journal for Numerical Methods in Engineering 1993; 36(9):14451464.
  • 41
    Tezduyar TE, Behr M, Liou J. A new strategy for finite-element computations involving moving boundaries and interfaces—the deforming-spatial-domain space-time procedure. 1. The concept and the preliminary numerical tests. Computer Methods in Applied Mechanics and Engineering 1992; 94(3):339351.
  • 42
    Tezduyar TE, Behr M, Mittal S, Liou J. A new strategy for finite-element computations involving moving boundaries and interfaces—the deforming-spatial-domain space-time procedure. 2. Computation of free-surface flows, 2-liquid flows, and flows with drifting cylinders. Computer Methods in Applied Mechanics and Engineering 1992; 94(3):353371.
  • 43
    Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ, Kolda TG, Lehoucq RB, Long KR, Pawlowski RP, Phipps ET, Salinger AG, Thornquist HK, Tuminaro RS, Willenbring JM, Williams A, Stanley KS. An overview of the Trilinos Project. Acm Transactions on Mathematical Software 2005; 31(3):397423.
  • 44
    Heroux MA, Sala M. The design of Trilinos. Applied Parallel Computing: State of the Art in Scientific Computing 2006; 3732: 620628.
  • 45
    Greenbaum A. Iterative Methods for Solving Linear Systems, Frontiers in Applied Mathematics 17. Society for Industrial and Applied Mathematics: Philadelphia, PA, 1997. xiii, 220 p.
  • 46
    Šolin P, Segeth K, Dolezel I. Higher-Order Finite Element Methods, Studies in advanced mathematics. Chapman & Hall/CRC: Boca Raton, FL, 2004. xx, 382 p.
  • 47
    Kumar GKaV. A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices, 1998.
  • 48
    Faires JD, Burden RL. Numerical Methods, 3rd ed. Thomson/Brooks/Cole: Pacific Grove, CA, 2003. xii, 622 p.
  • 49
    Tezduyar TE, Ramakrishnan S, Sathe S. Stabilized formulations for incompressible flows with thermal coupling. International Journal for Numerical Methods in Fluids 2008; 57(9):11891209.
  • 50
    Akin JE, Tezduyar TE. Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements. Computer Methods in Applied Mechanics and Engineering 2004; 193(21-22):19091922.
  • 51
    Kleinstreuer C, Zhang Z. Laminar-to-turbulent fluid-particle flows in a human airway model. International Journal of Multiphase Flow 2003; 29(2):271289.