SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Smith N, de Vecchi A, McCormick M, Nordsletten D, Camara O, Frangi AF, Delingette H, Sermesant M, Relan J, Ayache N, Krueger MW, Schulze WHW, Hose R, Valverde I, Beerbaum P, Staicu C, Siebes M, Spaan J, Hunter P, Weese J, Lehmann H, Chapelle D, Rezavi R. euheart: personalized and integrated cardiac care using patient-specific cardiovascular modelling. Interface Focus 2011; 1(3):349364.
  • 2
    Nordsletten D, Niederer S, Nash M, Hunter P, Smith N. Coupling multi-physics models to cardiac mechanics. Progress in Biophysics and Molecular Biology 2011; 104(1-3):7788.
  • 3
    Niederer SA, Smith NP. At the heart of computational modelling. Journal of Physiology 590(2012):13311338.
  • 4
    Xi J, Lamata P, Niederer S, Land S, Shi W, Zhuang X, Ourselin S, Duckett S, Shetty A, Rinald C, Rueckert D, Razavi R, Smith N. The estimation of patient-specific cardiac diastolic functions from clinical measurements. Medical Image Analysis 2013; 17: 133146.
  • 5
    Niederer SA, Plank G, Chinchapatnam P, Ginks M, Lamata P, Rhode KS, Rinaldi CA, Razavi R, Smith NP. Length-dependent tension in the failing heart and the efficacy of cardiac resynchronization therapy. Cardiovascular Research 2011; 89: 336343.
  • 6
    Bartocci E, Cherry EM, Glimm J, Grosu R, Smolka SA, Fenton FH. Toward real-time simulation of cardiac dynamics. In Proceedings of the 9th International Conference on Computational Methods in Systems Biology, CMSB ’11, ACM: New York, NY, USA, 2011; 103112.
  • 7
    Vigmond EJ, Boyle PM, Leon L, Plank G. Near-real-time simulations of biolelectric activity in small mammalian hearts using graphical processing units. Conf Proc IEEE Eng Med Biol Soc 2009; 2009: 32903.
  • 8
    Rocha BM, Campos FO, Amorim RM, Plank G, Santos RWd, Liebmann M, Haase G. Accelerating cardiac excitation spread simulations using graphics processing units. Concurr. Comput. : Pract. Exper. 2011; 23(7):708720.
  • 9
    Neic A, Liebmann M, Hoetzl E, Mitchell L, Vigmond E, Haase G, Plank G. Accelerating cardiac bidomain simulations using graphics processing units. IEEE Transactions on Biomedical Engineering 2012; 59: 22812290.
  • 10
    Sato D, Xie Y, Weiss J, Qu Z, Garfinkel A, Sanderson A. Acceleration of cardiac tissue simulation with graphic processing units. Medical & Biological Engineering & Computing 2009; 47(9):10111015.
  • 11
    Niederer S, Mitchell L, Smith N, Plank G. Simulating human cardiac electrophysiology on clinical time-scales. Frontiers in Physiology 2011; 2(14):17.
  • 12
    Reumann M, Fitch BG, Rayshubskiy A, Keller DUJ, Seemann G, Dossel O, Pitman MC, Rice JJ. Strong scaling and speedup to 16,384 processors in cardiac electro-mechanical simulations. In Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, 2009; 27952798, DOI: 10.1109/IEMBS.2009.5333802.
  • 13
    Hosoi A, Washio T, Okada J, Kadooka Y, Nakajima K, Hisada T. A multi-scale heart simulation on massively parallel computers, International Conference on High Performance Computing, Networking, Storage and Analysis, 2010; 111.
  • 14
    Lafortune P, ArÃs R, Vazquez M, Houzeaux G. Coupled electromechanical model of the heart: parallel finite element formulation. International Journal for Numerical Methods in Biomedical Engineering 2012; 28(1):7286.
  • 15
    Nash M, Hunter P. Computational mechanics of the heart. Journal of Elasticity 2000; 61: 113141.
  • 16
    Sainte-Marie J, Chapelle D, Cimrman R, Sorine M. Modeling and estimation of the cardiac electromechanical activity. Computers & Structures 2006; 84: 17431759.
  • 17
    Stevens C, Remme E, LeGrice I, Hunter P. Ventricular mechanics in diastole: material parameter sensitivity. Journal of Biomechanics 2003; 36(5):737748.
  • 18
    Göktepe S, Kuhl E. Electromechanics of the heart: a unified approach to the strongly coupled excitation-contraction problem. Computational Mechanics 2010; 45: 227243.
  • 19
    NVIDIA, 2012. NVIDIA CUDA Programming Guide 4.2.
  • 20
    Clayton RH, O OB, Cherry E, Dierckx H, Fenton F, Mirabella L, Panfilov A, Sachse F, G GS, Zhang H. Models of cardiac tissue electrophysiology: progress, challenges and open questions. Progress in Biophysics & Molecular Biology 2011; 104: 2248.
  • 21
    Keener J, Sneyd J. Mathematical Physiology. Springer: New York, NY, USA, 2004.
  • 22
    Henriquez C. Simulating the electrical behavior of cardiac tissue using the bidomain model. Critical Reviews in Biomedical Engineering 1993; 21(1):177.
  • 23
    Muler A, Markin V. Electrical properties of anisotropic nerve-muscle syncytia-I. Distribution of the electrotonic potential. Biofizika 1977; 2(22):307312.
  • 24
    Muler A, Markin V. Electrical properties of anisotropic nerve-muscle syncytia-II. Spread of flat front of excitation. Biofizika 1977; 3(22):518522.
  • 25
    Muler A, Markin V. Electrical properties of anisotropic nerve-muscle syncytia-III. Steady form of the excitation front. Biofizika 1977; 4(22):671675.
  • 26
    Gulrajani R. Bioelectricity and Biomagnetism. Wiley, 1998.
  • 27
    Leon LJ, Horacek BM. Computer model of excitation and recovery in the anisotropic myocardium. I. Rectangular and cubic arrays of excitable elements. Journal of Electrocardiology 1991; 24(1):115.
  • 28
    Bueno-Orovio A, Cherry EM, Fenton FH. Minimal model for human ventricular action potentials in tissue. JournalAnnals ofTheoretical Biology 2008; 253(3):544560.
  • 29
    Dal H, Goktepe S, Kaliske M, Kuhl E. A fully implicit finite element method for bidomain models of cardiac electrophysiology. Computer Methods in Biomechanics and Biomedical Engineering 2012; 15: 645656. DOI: 10.1080/10255842.2011.554410.
  • 30
    Pathmanathan P, Bernabeu MO, Bordas R, Cooper J, Garny A, Pitt-Francis JM, Whiteley JP, Gavaghan DJ. A numerical guide to the solution of the bidomain equations of cardiac electrophysiology. Progress in Biophysics & Molecular Biology 2010; 102: 136155.
  • 31
    Rocha B, Kickinger F, Prassl A, Haase G, Vigmond E, dos Santos R, Zaglmayr S, Plank G. A macro finite-element formulation for cardiac electrophysiology simulations using hybrid unstructured grids. IEEE Transactions on Biomedical Engineering 2011; 58: 105565.
  • 32
    Trew M, Le Grice I, Smaill B, Pullan A. A finite volume method for modeling discontinuous electrical activation in cardiac tissue. Annals of Biomedical Engineering 2005; 33: 590602.
  • 33
    Brenner S, Scott RL. The Mathematical Theory of Finite Element Methods. Springer: New York, NY, USA, 2005.
  • 34
    Land S, Niederer SA, Smith NP. Efficient computational methods for strongly coupled cardiac electromechanics. IEEE Transactions on Biomedical Engineering 2012; 59(5):12191228.
  • 35
    hsing Luo C, Rudy Y. A model of the ventricular cardiac action potential - depolarisation, repolarisation and their interaction. Circulation Research 1991; 68: 15011526.
  • 36
    ten Tusscher KH, Panfilov AV. Alternans and spiral breakup in a human ventricular tissue model. Am. J. Physiol Heart Circ. Physiol. 2006; 291: H1088H1100.
  • 37
    Qu Z, Garfinkel A. An advanced algorithm for solving partial differential equation in cardiac conduction. IEEE Transactions on Biomedical Engineering 1999; 46: 11661168.
  • 38
    Hundsdorfer W, Verwer J. Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer: New York, NY, USA, 2010.
  • 39
    Vigmond E, Hughes M, Plank G, Leon L. Computational tools for modeling electrical activity in cardiac tissue. Journal of Electrocardiology 2003; 36: 6974.
  • 40
    Mardal KA, Skavhaug O, Lines GT, Staff GA, Odegard A. Using python to solve partial differential equations. Computing in Science and Engineering 2007; 9(3):4851.
  • 41
    Heidenreich EA, Ferrero JM, Doblare M, Rodriguez JF. Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology. Annals of Biomedical Engineering 38(7):23312345.
  • 42
    Bonet J, Wood R. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press: Cambridge, UK, 1997.
  • 43
    Malvern L. Introduction to the Mechanics of Continuous Medium. Prentice-Hall: Upper Saddle River, NJ, USA, 1969.
  • 44
    Wang C, Truesdell C. Introduction to Rational Elasticity (Mechanics of Continua). Springer: New York, NY, USA, 1973.
  • 45
    Costa K, Holmes J, McCulloch A. Modeling cardiac mechanical properties in three dimensions. Philisophical Transactions of the Royal Society 2001; 359: 12331250.
  • 46
    Kerckhoffs R, Bovendeerd P, Prinzen F, Smits K, Arts T. Intra-and interventricular asynchrony of electromechanics in the ventricularly paced heart. Journal of Engineering Mathematics 2003; 47: 20116.
  • 47
    Niederer SA, Kerfoot E, Benson AP, Bernabeu MO, Bernus O, Bradley C, Cherry EM, Clayton R, Fenton FH, Garny A, Heidenreich E, Land S, Maleckar M, Pathmanathan P, Plank G, RodrÃguez JF, Roy I, Sachse FB, Seemann G, Skavhaug O, Smith NP. Verification of cardiac tissue electrophysiology simulators using an N-Version benchmark. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2011; 369(1954):43314351.
  • 48
    Nielson P, Grice IL, Smaill B, Hunter P. Mathematical model of geometry and fibrous structure of the heart. American Journal of Physiology 1991; 260:H1365H1378.
  • 49
    Shi Y, Korakianitis T. Numerical simulation of cardiovascular dynamics with left heart failure and in–series pulatile ventricular assist device. Artificial Organs 2006; 30: 929948.
  • 50
    Korakianitis T, Shi Y. A concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction. Medical Engineering and Physics 2006; 28: 613628.
  • 51
    McCormick M, Nordsletten D, Kay D, Smith N. Simulating left ventricular fluid-solid mechanics through the cardiac cycle under lvad support. Journal of Computational Physics 2013; 244: 8096. DOI: 10.1016/j.jcp.2012.08.008.
  • 52
    Lee J, Niederer S, Nordsletten D, Grice IL, Smaill B, Kay D, Smith N. Coupling contraction, excitation, ventricular and coronary blood flow across scale and physics in the heart. Philisophical Transactions of the Royal Society A 2009; 367: 23112331.
  • 53
    Nordsletten D, Kay D, Smith N. A non–conforming monolithic finite element method for problems of coupled mechanics. Journal of Computational Physics 2010; 20: 75717593.
  • 54
    Nordsletten D, McCormick M, Kilner P, Kay D, Smith N. Fluid-solid coupling for the investigation of diastolic and systolic human left ventricular function. International Journal for Numerical Methods in Biomedical Engineering 2011; 27: 101739.
  • 55
    McCormick M, Nordsletten D, Kay D, Smith N. Modelling left ventricular function under assist device support. International Journal for Numerical Methods in Biomedical Engineering 2011; 27: 10731095.
  • 56
    de Vecchi A, Nordsletten D, Remme E, Bellsham-Revell H, Greil G, Simpson J, Razavi R, Smith N. Inflow typology and ventricular geometry determine efficiency of filling in the hypoplastic left heart. Annals of Thoracic Surgery 2012; 94: 15621569.
  • 57
    Schloegel K, Karypis G, Kumar V. Multilevel diffusion schemes for repartitioning of adaptive meshes. Journal of Parallel and Distributed Computing 1997; 47: 109124.
  • 58
    Balay S, Gropp WD, McInnes LC, Smith BF. Efficient management of parallelism in object oriented numerical software libraries. In Modern Software Tools in Scientific Computing, Arge E, Bruaset AM, Langtangen HP (eds). Birkhäuser Press: Basel, Switzerland, 1997; 163202.
  • 59
    Amestoy PR, Duff IS, L'Excellent JY, Koster J. A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applications 2001; 23(1):1541.
  • 60
    Li XS, Demmel JW. SuperLU_DIST: a scalable distributed-memory sparse direct solver for unsymmetric linear systems. ACM Transactions on Mathematical Software 2003; 29(2):110140.
  • 61
    Cuellar AA, Lloyd CM, Nielsen PF, Bullivant DP, Nickerson DP, Hunter PJ. An Overview of CellML 1.1, a Biological Model Description Language. SIMULATION: Transactions of the Society for Modeling and Simulation International 2003; 79(12):740747.
  • 62
    Golub GH, Van Loan CF. Matrix Computations, 3rd Edition. The Johns Hopkins University Press: Baltimore, 1996.