SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Steinman DA. Image-based computational fluid dynamics modeling in realistic arterial geometries. Annals of Biomedical Engineering 2002; 30(4):483497.
  • 2
    Holtzman-Gazit M, Kimmel R, Peled N, Goldsher D. Segmentation of thin structures in volumetric medical images. IEEE Transactions on Image Processing 2006; 15(2):354363.
  • 3
    Burghardt AJ, Kazakia GJ, Majumdar S. A local adaptive threshold strategy for high resolution peripheral quantitative computed tomography of trabecular bone. Annals of Biomedical Engineering 2007; 19(3):16781686.
  • 4
    He R, Sajja BR, Datta S, Narayana PA. Volume and shape in feature space on adaptive FCM in MRI segmentation. Annals of Biomedical Engineering 2008; 36(9):15801593.
  • 5
    Zhang J, Liu Y, Sun X, Yu S, Yu C. Computational fluid dynamics simulations of respiratory airflow in human nasal cavity and its characteristic dimension study. Acta Mechanica Sinica 2008; 24: 223228.
  • 6
    Radaelli AG, Peiro J. On the segmentation of vascular geometries from medical images. International Journal for Numerical Methods in Biomedical Engineering 2010; 26(1):334.
  • 7
    Ma Z, Jorge RNM, Mascarenhas T, Tavares JMR. Segmentation of female pelvic cavity in axial t2-weighted mr images towards the 3D reconstruction. International Journal for Numerical Methods in Biomedical Engineering 2012; 28(6-7):714726.
  • 8
    Gloger O, Ehrhardt M, Dietrich T, Hellwich O, Graf K, Nagel E. A threestepped coordinated level set segmentation method for identifying atherosclerotic plaques on mr-images. Communications in Numerical Methods in Engineering 2009; 25(6):615638.
  • 9
    Pedoia V, Binaghi E. Automatic MRI 2D brain segmentation using graph searching technique. International Journal for Numerical Methods in Biomedical Engineering 2012; 29(9):887904. DOI: 10.1002/cnm.2498.
  • 10
    Tsai K, Ma J, Ye D, Wu J. Curvelet processing of MRI for local image enhancement. International Journal for Numerical Methods in Biomedical Engineering 2012; 28(6-7):661677.
  • 11
    Sazonov I, Yeo SY, Bevan RLT, Xie X, van Loon R, Nithiarasu P. Modelling pipeline for subject-specific arterial blood flowa review. International Journal for Numerical Methods in Biomedical Engineering 2011; 27(12):18681910.
  • 12
    Dakua SP, Sahambi JS. Modified active contour model and random walk approach for left ventricular cardiac mr image segmentation. International Journal for Numerical Methods in Biomedical Engineering 2011; 27(9):13501361.
  • 13
    Wang Y, Hou Z, Yang X, Lim K. Adaptive b-snake model using shape and appearance information for object segmentation. International Journal for Numerical Methods in Biomedical Engineering 2011; 27(5):633649.
  • 14
    Papadakis M, Bodmann BG, Alexander SK, Vela D, Baid S, Gittens AA, Kouri DJ, Gertz SD, Jain S, Romero JR, Li X, Cherukuri P, Cody DD, Gladish GW, Aboshady I, Conyers JL, Casscells SW. Texture-based tissue characterization for high-resolution ct scans of coronary arteries. Communications in Numerical Methods in Engineering 2009; 25(6):597613.
  • 15
    Gil JE, Aranda JP, Mrida-Casermeiro E, Ujaldn M. Efficient biomarkers for the characterization of bone tissue. International Journal for Numerical Methods in Biomedical Engineering 2012; 28(12):11841197.
  • 16
    Miller K, Wittek A, Joldes G, Horton A, Dutta-Roy T, Berger J, Morriss L. Modelling brain deformations for computer-integrated neurosurgery. International Journal for Numerical Methods in Biomedical Engineering 2010; 26(1):117138.
  • 17
    Chan T, Vese L. Active contours without edges. IEEE Transactions on Image Processing 2001; 10(2):266277.
  • 18
    Paragios N, Deriche R. Geodesic active regions and level set methods for supervised texture segmentation. International Journal of Computer Vision 2002; 46(3):223247.
  • 19
    Zhang K, Song H, Zhang L. Active contours driven by local image fitting energy. Pattern Recognition 2010; 43(4):11991206.
  • 20
    Li T, Krupa A, Collewet C. A robust parametric active contour based on fourier descriptors. IEEE Conference on Image Processing, Brussels, Belgium, September 11–14, 2010; 10371040.
  • 21
    Yeo SY, Xie X, Sazonov I, Nithiarasu P. Geometrically induced force interaction for three-dimensional deformable models. IEEE Transactions on Image Processing 2011; 20(5):13731387.
  • 22
    Wang Y, Wei GW, Yang S. Partial differential equation transform - variational formulation and fourier analysis. International Journal for Numerical Methods in Biomedical Engineering 2011; 27(12):19962020.
  • 23
    Cootes TF, Taylor CJ, Cooper DH, Graham J. Active shape models-their training and application. Computer Vision and Image Understanding 1995; 61(1):3859.
  • 24
    Goodall C. Procrustes methods in the statistical analysis of shapes. Journal of the Statistical Society, B 1991; 53(2):285339.
  • 25
    Leventon M, Grimson W, Faugeras O. Statistical shape influence in geodesic active contours. In IEEE Conference on Computer Vision Pattern Recognition, Vol. 1. IEEE Computer Society: Los Alamitos, CA, USA, 2005; 316323.
  • 26
    Rousson M, Paragios N. Shape priors for level set representations. European Conference on Computer Vision, Copenhagen, Denmark, May 28–31, 2002; 7892.
  • 27
    Cremers D, Osher S, Soatto S. Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. International Journal of Computer Vision 2006; 69(3):335351.
  • 28
    Kim J, Cetin M, Wilsky AS. Nonparametric shape priors for active contour-based image segmentation. Signal Processing 2007; 87(12):30213044.
  • 29
    Caselles V, Kimmel R, Sapiro G. Geodesic active contour. International Journal of Computer Vision 1997; 22(1):6179.
  • 30
    Tsai A, Yezzi A, Wells W, Tempany C, Tucker D, Fan A, Grimson WE, Willsky A. Model-based curve evolution technique for image segmentation. In IEEE Conference on Computer Vision Pattern Recognition, Vol. 1. IEEE Computer Society: Los Alamitos, CA, USA, Kauai, Hawaii, USA, 8-14 Dec. 2001; 463468.
  • 31
    Chen Y, Tagare HD, Thiruvenkadam S, Huang F, Wilson D, Briggs RW, Geiser EA. Using prior shapes in geometric active contours in a variational framework. International Journal of Computer Vision 2002; 50(3):315328.
  • 32
    Chen S, Radke R. Level set segmentation with both shape and intensity priors. IEEE Internaitonal Conference on Computer Vision, 2009; 763770.
  • 33
    Yeo SY, Xie X, Sazonov I, Nithiarasu P. Level set segmentation with robust image gradient energy and statistical shape prior. 18th IEEE International Conference on Image Processing, Pages, Brussels, Belguim, September 11–14, 2011; 33973400.
  • 34
    Malladi R, Sethian JA, Vemuri BC. Shape modelling with front propagation: a level set approach. IEEE Transations on Pattern Analysis and Machine Intelligence 1995; 17(2):158175.
  • 35
    Xu C, Prince JL. Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing 1998; 7(3):359369.
  • 36
    Paragios N, Mellina-Gottardo O, Ramesh V. Gradient vector flow geometric active contours. IEEE Transations on Pattern Analysis and Machine Intelligence 2004; 26(3):402407.
  • 37
    Yeo SY, Xie X, Sazonov I, Nithiarasu P. Geometric potential force for the deformable model. British Machine Vision Conference, London, September 7–10, 2009.
  • 38
    Kim J, Fisher JW, Yezzi A, Cetin M, Willsky AS. A nonparametric statistical method for image segmentation using information theory and curve evolution. IEEE Transactions on Medical Imaging 2005; 14(10):14861502.
  • 39
    Sethian JA. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Material Science. Cambridge University Press: Cambridge, UK, 1999.
  • 40
    Felzenszwalb PF, Huttenlocher DP. Efficient graph-based image segmentation. International Journal of Computer Vision 2004; 59(2):167181.
  • 41
    Dambreville S, Rathi Y, Tannenbaum A. A framework for image segmentation using shape models and kernel space shape priors. IEEE Transactions on Pattern Analysis and Machine Intelligence 2008; 30(8):13851399.