• 1
    Alastruey J, Parker KH, Sherwin SJ. Arterial pulse wave haemodynamics. In 11th International Conference on Pressure Surges, Lisbon, Portugal, 24th – 26th October, Anderson S (ed.). Virtual PiE Led t/a BHR Group: 2012; 401442, ISBN: 9781855981331.
  • 2
    Jones C, Parker K, Hughes R, Sheridan D. Nonlinearity of human arterial pulse wave transmission. Transactions of the ASME Journal of Biomechanical Engineering 1992; 114: 1014.
  • 3
    Jones C, Sugawara M. “Wavefronts” in the aorta – implications for the mechanisms of left ventricular ejection and aortic valve closure. Cardiovascular Research 1993; 27: 19021905.
  • 4
    Khir A, Henein M, Koh T, Das S, Parker K, Gibson D. Arterial waves in humans during peripheral vascular surgery. Clinical Science 2001; 101: 749757.
  • 5
    Jones C, Sugawara M, Kondoh Y, Uchida K, Parker K. Compression and expansion wavefront travel in canine ascending aortic flow: wave intensity analysis. Heart Vessels 2002; 16: 9198.
  • 6
    Ohte N, Narita H, Sugawara M, Niki K, Okada T, Harada A, Hayano J, Kimura G. Clinical usefulness of carotid arterial wave intensity in assessing left ventricular systolic and early diastolic performance. Heart Vessels 2003; 18: 107111.
  • 7
    Zambanini A, Cunningham S, Parker K, Khir AW, Thom S, Hughes A. Wave-energy patterns in carotid, brachial, and radial arteries: a noninvasive approach using wave-intensity analysis. American Journal of Physiology - Heart and Circulatory Physiology 2005; 289: H270H276.
  • 8
    Avgeropoulou C, Illmann A, Schumm-Draeger PM, Kallikazaros J, von Bibra H. Assessment of arterio-ventricular coupling by tissue Doppler and wave intensity in type 2 diabetes. British Journal of Diabetes & Vascular Disease 2006; 6: 271278.
  • 9
    Sugawara M, Niki K, Ohte N, Okada T, Harada A. Clinical usefulness of wave intensity analysis. Medical and Biological Engineering and Computing 2009; 47: 197206.
  • 10
    Kolyva C, Pantalos G, Giridharan G, Pepper J, Khir A. Discerning aortic waves during intra-aortic balloon pumping and their relation to benefits of counterpulsation in humans. Journal of Applied Physiology 2009; 107: 14971503.
  • 11
    Liu J, Yuan LJ, Zhang ZM, Duan YY, Xue JH, Yang YL, Guo Q, Cao TS. Effects of acute cold exposure on carotid and femoral wave intensity indexes: evidence for reflection coefficient as a measure of distal vascular resistance. Journal of Applied Physiology 2011; 110: 738745.
  • 12
    Sun Y, Anderson T, Parker K, Tyberg J. Wave-intensity analysis: a new approach to coronary hemodynamics. Journal of Applied Physiology 2000; 89: 16361644.
  • 13
    Sun Y, Anderson T, Parker K, Tyberg J. Effects of left ventricular contractility and coronary vascular resistance on coronary dynamics. American Journal of Physiology - Heart and Circulatory Physiology 2004; 286: H1590H1595.
  • 14
    Davies J, Whinnett Z, Francis D, Manisty C, Aguado-Sierra J, Willson K, Foale R, Malik I, Hughes A, Parker K, et al. Evidence of a dominant backward-propagating “suction” wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy. Circulation 2006; 113: 17681778.
  • 15
    Parker K, Jones C. Forward and backward running waves in the arteries: analysis using the method of characteristics. Journal of Biomechanical Engineering 1990; 112: 322326.
  • 16
    Parker K. An introduction to wave intensity analysis. Medical and Biological Engineering and Computing 2009; 47: 175188.
  • 17
    Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. Journal of the American College of Cardiology 2010; 55: 13181327.
  • 18
    Mynard J, Penny D, Smolich J. Wave intensity amplification and attenuation in non-linear flow: implications for the calculation of local reflection coefficients. Journal of Biomechanics 2008; 41: 33143321.
  • 19
    van den Wijngaard J, Siebes M, Westerhof B. Comparison of arterial waves derived by classical wave separation and wave intensity analysis in a model of aortic coarctation. Medical and Biological Engineering and Computing 2009; 47: 211220.
  • 20
    Smolich J, Mynard J, Penny D. Pulmonary trunk, ductus arteriosus, and pulmonary arterial phasic blood flow interactions during systole and diastole in the fetus. Journal of Applied Physiology 2011; 110: 13621373.
  • 21
    Mynard J, Penny D, Davidson M, Smolich J. The reservoir-wave paradigm introduces error into arterial wave analysis: a computer modelling and in-vivo study. Journal of Hypertension 2012; 20: 734743.
  • 22
    Trachet B, Reymond P, Kips J, Swillens A, Buyzere MD, Suys B, Stergiopulos N, Segers P. Numerical validation of a new method to assess aortic pulse wave velocity from a single recording of a brachial artery waveform with an occluding cuff. Annals of Biomedical Engineering 2010; 38: 876888.
  • 23
    Alastruey J. Numerical assessment of time-domain methods for the estimation of local arterial pulse wave speed. Journal of Biomechanics 2011; 44: 885891.
  • 24
    Mynard J, Davidson M, Penny D, Smolich J. Robustness of the P-U and lnD-U loop wave speed estimation methods: effects of the diastolic pressure decay and vessel wall non-linearities. Proceedings of the 33rd Annual International Conference of the IEEE EMBS, Boston, MA, USA, 2011; 64466449.
  • 25
    Gaddum N, Alastruey J, Beerbaum P, Chowienczyk P, Schaeffter T. A technical assessment of pulse wave velocity algorithms applied to non-invasive arterial waveforms. Annals of Biomedical Engineering 2013: 113, DOI: 10.1007/s10439-013-0854-y.
  • 26
    Stettler J, Niederer P, Anliker M. Theoretical analysis of arterial hemodynamics including the influence of bifurcations. Part II: critical evaluation of theoretical model and comparison with noninvasive measurements of flow patterns in normal and pathological cases. Annals of Biomedical Engineering 1981; 9: 165175.
  • 27
    Olufsen M, Peskin C, Kim W, Pedersen E, Nadim A, Larsen J. Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Annals of Biomedical Engineering 2000; 28: 12811299.
  • 28
    Steele B, Wan J, Ku J, Hughes T, Taylor C. In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts. IEEE Transactions on Biomedical Engineering 2003; 50: 649656.
  • 29
    Reymond P, Merenda F, Perren F, Rüfenacht D, Stergiopulos N. Validation of a one-dimensional model of the systemic arterial tree. American Journal of Physiology - Heart and Circulatory Physiology 2009; 297: H208H222.
  • 30
    Segers P, Dubois F, Wachter DD, Verdonck P. Role and relevancy of a cardiovascular simulator. Cardiovascular Engineering 1998; 3: 4856.
  • 31
    Bessems D, Giannopapa C, Rutten M, van de Vosse F. Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels. Journal of Biomechanics 2008; 41: 284291.
  • 32
    Alastruey J, Khir A, Matthys K, Segers P, Sherwin S, Verdonck P, Parker K, Peiró J. Pulse wave propagation in a model human arterial network: assessment of 1-D visco-elastic simulations against in vitro measurements. Journal of Biomechanics 2011; 44: 22502258.
  • 33
    Saito M, Ikenaga Y, Matsukawa M, Watanabe Y, Asada T, Lagrée PY. One-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results. Journal of Biomechanical Engineering 2011; 133: 121005.
  • 34
    Huberts W, Canneyt KV, Segers P, Eloot S, Tordoir J, Verdonck P, van de Vosse F, Bosboom E. Experimental validation of a pulse wave propagation model for predicting hemodynamics after vascular access surgery. Journal of Biomechanics 2012; 45: 16841691.
  • 35
    Xiao N, Alastruey J, Figueroa C. A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models. International Journal for Numerical Methods in Biomedical Engineering 2013, DOI: 10.1002/cnm.2598.
  • 36
    Sherwin S, Franke V, Peiró J, Parker K. One-dimensional modelling of a vascular network in space-time variables. Journal of Engineering Mathematics 2003; 47: 217250.
  • 37
    Peiró J, Veneziani A. Reduced models of the cardiovascular system. In Cardiovascular Mathematics. Modeling and Simulation of the Circulatory System, Formaggia L, Quarteroni A, Veneziani A (eds.). Springer-Verlag: Milano, 2009; 347394.
  • 38
    Segers P, Verdonck P. Role of tapering in aortic wave reflection: hydraulic and mathematical model study. Journal of Biomechanics 2000; 33: 299306.
  • 39
    Alastruey J, Parker K, Peiró J, Sherwin S. Analysing the pattern of pulse waves in arterial networks: a time-domain study. Journal of Engineering Mathematics 2009; 64: 331351.
  • 40
    Davies J, Alastruey J, Francis D, Hadjiloizou N, Whinnett Z, Manisty C, Aguado-Sierra J, Willson K, Foale R, Malik I, et al. Attenuation of wave reflection by wave entrapment creates a ‘horizon effect’ in the human aorta. Hypertension 2012; 60: 778785.
  • 41
    Westerhof B, Westerhof N. Magnitude and return time of the reflected wave: the effects of large artery stiffness and aortic geometry. Journal of Hypertension 2012; 30: 932939.
  • 42
    Alastruey J, Parker K, Peiró J, Sherwin S. Lumped parameter outflow models for 1-D blood flow simulations: effect on pulse waves and parameter estimation. Communications in Computational Physics 2008; 4: 317336.
  • 43
    Valdez-Jasso D, Bia D, Zócalo Y, Armentano R, Haider M, Olufsen M. Linear and nonlinear viscoelastic modeling of aorta and carotid pressure–area dynamics under in vivo and ex vivo conditions. Annals of Biomedical Engineering 2011; 39: 14381456.
  • 44
    McDonalds D. Blood Flow in Arteries, Edward Arnold: London, 1974.
  • 45
    Caro C, Pedley T, Schroter R, Seed W. The Mechanics of the Circulation, (2nd edn),Cambridge University Press: Cambridge, 2011.
  • 46
    Simon A, Safar M, Levenson J, London G, Levy B, Chau N. An evaluation of large arteries compliance in man. American Journal of Physiology 1979; 237: H550H554.
  • 47
    Cheng C, Herfkens R, Taylor C. Abdominal aortic hemodynamic conditions in healthy subjects aged 50–70 at rest and during lower limb exercise: in vivo quantification using MRI. Atherosclerosis 2003; 168: 323331.
  • 48
    Yamamoto T, Ogasawara Y, Kimura A, Tanaka H, Hiramatsu O, Tsujioka K, Lever J, Parker K, Jones C, Caro C, et al. Blood velocity profiles in the human renal artery by Doppler ultrasound and their relationship to atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology 1996; 16: 172177.
  • 49
    Holdsworth D, Norley C, Frayne R, Steinman D, Rutt B. Characterization of common carotid artery blood-flow waveforms in normal human subjects. Physiological Measurement 1999; 20: 219240.
  • 50
    Oates C. Cardiovascular Haemodynamics and Doppler Waveforms Explained, Appendix C. Greenwich Medical Media LTD: Cambridge, 2001.
  • 51
    Savitzky A, Golay M. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry 1964; 36: 16271639.
  • 52
    Press W, Teukolsky S, Vetterling W, Flannery B. Numerical Recipes in C: The Art of Scientific Computing, (2nd edn),Cambridge University Press: New York, 1992.
  • 53
    Khir A, O'Brien A, Gibbs J, Parker K. Determination of wave speed and wave separation in the arteries. Journal of Biomechanics 2001; 34: 11451155.
  • 54
    Alastruey J, Passerini T, Formaggia L, Peiró J. Physical determining factors of the arterial pulse waveform: theoretical analysis and estimation using the 1-D formulation. Journal of Engineering Mathematics 2012; 77: 1937.
  • 55
    Wang JJ, O'Brien A, Shrive N, Parker K, Tyberg J. Time-domain representation of ventricular-arterial coupling as a windkessel and wave system. American Journal of Physiology - Heart and Circulatory Physiology 2003; 284: H1358H1368.
  • 56
    Alastruey J. On the mechanics underlying the reservoir–excess separation in systemic arteries and their implications for pulse wave analysis. Cardiovascular Engineering 2010; 10: 176189.
  • 57
    Khir A, Parker K. Wave intensity in the ascending aorta: effects of arterial occlusion. Journal of Biomechanics 2004; 38: 657655.
  • 58
    Penny D, Mynard J, Smolich J. Aortic wave intensity analysis of ventricular-vascular interaction during incremental dobutamine infusion in adult sheep. American Journal of Physiology - Heart and Circulatory Physiology 2008; 294: H481H489.
  • 59
    van Houwelingen M, Merkus D, Hekkert M, van Dijk G, Hoeks A, Duncker D. Initiation of ventricular contraction as reflected in the aortic pressure waveform. Physiological Measurement 2012; 33: 557569.
  • 60
    Kelly R, Hayward C, Avolio A, O'Rourke M. Noninvasive determination of age-related changes in the human arterial pulse. Circulation 1989; 80: 16521659.
  • 61
    Mynard J. Computer Modelling and Wave Intensity Analysis of Perinatal Cardiovascular Function and Dysfunction. Ph.D. Thesis, University of Melbourne, Australia, 2011.
  • 62
    Murgo J, Westerhof N, Giolma J, Altobelli S. Aortic input impedance in normal man: relationship to pressure wave forms. Circulation 1980; 62: 105116.
  • 63
    Vermeersch S, Rietzschel E, Buyzere MD, Bortel LV, Gillebert T, Verdonck P, Segers P. The reservoir pressure concept: the 3-element windkessel model revisited? Application to the Asklepios population study. Journal of Engineering Mathematics 2009; 64: 417428.
  • 64
    Avolio A, Chen S, Wang R, Zhang C, Li M, O'Rourke M. Effects of aging on changing arterial compliance and left ventricular load in a northern Chinese urban community. Circulation 1983; 68: 5058.
  • 65
    Safar M, Blacher J, Jankowski P. Arterial stiffness, pulse pressure, and cardiovascular disease – Is it possible to break the vicious circle? Atherosclerosis 2011; 218: 263271.
  • 66
    Aguado-Sierra J, Alastruey J, Wang JJ, Hadjiloizou N, Davies J, Parker K. Separation of the reservoir and wave pressure and velocity from measurements at an arbitrary location in arteries. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 2008; 222: 403416.
  • 67
    Siebes M, Kolyva C, Verhoeff BJ, Piek JJ, Spaan JA. Potential and limitations of wave intensity analysis in coronary arteries. Medical and Biological Engineering and Computing 2009; 47: 233239.
  • 68
    Feng J, Khir A. Determination of wave speed and wave separation in the arteries using diameter and velocity. Journal of Biomechanics 2010; 43: 455462.
  • 69
    Davies J, Whinnett Z, Francis D, Willson K, Foale R, Malik I, Hughes A, Parker K, Mayet J. Use of simultaneous pressure and velocity measurements to estimate arterial wave speed at a single site in humans. American Journal of Physiology - Heart and Circulatory Physiology 2006; 290: H878H885.