SEARCH

SEARCH BY CITATION

Bibliography

  • 1
    Boyd, S.; Vandenberghe, L. Convex optimization. Cambridge University Press, Cambridge, 2004.
  • 2
    Candès, E. J.; Romberg, J. Quantitative robust uncertainty principles and optimally sparse decompositions. Found Comput Math, in press. arXiv: math.CA/0411273, 2004.
  • 3
    Candès, E. J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inform Theory 52 (2006), no. 2, 489509.
  • 4
    Candès, E. J.; Tao, T. Decoding by linear programming. IEEE Trans Inform Theory, 51 (2005), no. 12, 42034215.
  • 5
    Candès, E. J.; Tao, T. Near-optimal signal recovery from random projections and universal encoding strategies. IEEE Trans Inform Theory, submitted. arXiv:math.CA/0410542.
  • 6
    Chen, S. S.; Donoho, D. L.; Saunders, M. A. Atomic decomposition by basis pursuit. SIAM J Sci Comput 20 (1998), no. 1, 3361. SIAM Rev 43 (2001), no. 1, 129159 (electronic).
  • 7
    DeVore, R. A.; Jawerth, B.; Lucier, B. Image compression through wavelet transform coding. IEEE Trans Inform Theory 38 (1992), no. 2, part 2, 719746.
  • 8
    Donoho, D. L. Compressed sensing. IEEE Trans Inform Theory, submitted.
  • 9
    Donoho, D. L. For most large undetermined systems of linear equations the minimal ��1-norm near-solution is also the sparsest near-solution. Comm Pure Appl Math, in press.
  • 10
    Donoho, D. L. For most large undetermined systems of linear equations the minimal ��1-norm solution is also the sparsest solution. Comm Pure Appl Math, in press.
  • 11
    Donoho, D. L.; Elad, M. Optimally sparse representation in general (nonorthogonal) dictionaries via ��1 minimization. Proc Natl Acad Sci USA 100 (2003), no. 5, 21972202 (electronic).
  • 12
    Donoho, D. L.; Elad, M.; Temlyakov, V. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans Inform Theory 52 (2006), no. 1, 618.
  • 13
    Donoho, D. L.; Huo, X. Uncertainty principles and ideal atomic decomposition. IEEE Trans Inform Theory 47 (2001), no. 7, 28452862.
  • 14
    Gilbert, A. C.; Muthukrishnan, S.; Strauss, M. Improved time bounds for near-optimal sparse Fourier representations. DIMACS Technical Report, 2004-49, October 2004.
  • 15
    Goldfarb, D.; Yin, W. Second-order cone programming based methods for total variation image restoration. Technical report, Columbia University, 2004. SIAM J Sci Comput submitted.
  • 16
    Rudin, L. I.; Osher, S.; Fatemi, E. Nonlinear total variation noise removal algorithm. Phys D 60 (1992), 25968.
  • 17
    Szarek, S. Condition numbers of random matrices. J Complexity 7 (1991), no. 2, 131149.
  • 18
    Tropp, J. Just relax: Convex programming methods for identifying sparse signals in noise. IEEE Trans Inform Theory, in press.
  • 19
    Zou, J.; Gilbert, A. C.; Strauss, M. J.; Daubechies, I. Theoretical and experimental analysis of a randomized algorithm for sparse Fourier transform analysis. J Computational Phys, to appear. Preprint. arXiv: math.NA/0411102, 2004.