SEARCH

SEARCH BY CITATION

Abstract

We consider well-posedness of the aggregation equation ∂tu + div(uv) = 0, v = −▿K * u with initial data in \input amssym ${\cal P}_2 {\rm (\Bbb R}^d {\rm )} \cap L^p ({\Bbb R}^d )$ in dimensions 2 and higher. We consider radially symmetric kernels where the singularity at the origin is of order |x|α, α > 2 − d, and prove local well-posedness in \input amssym ${\cal P}_2 { (\Bbb R}^d {\rm )} \cap L^p ({\Bbb R}^d )$ for sufficiently large p < ps. In the special case of K(x) = |x|, the exponent ps = d/(d = 1) is sharp for local well-posedness in that solutions can instantaneously concentrate mass for initial data in \input amssym ${\cal P}_2 { (\Bbb R}^d {\rm )} \cap L^p ({\Bbb R}^d )$ with p < ps. We also give an Osgood condition on the potential K(x) that guarantees global existence and uniqueness in \input amssym ${\cal P}_2 { (\Bbb R}^d {\rm )} \cap L^p ({\Bbb R}^d )$. © 2010 Wiley Periodicals, Inc.