SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Hosny AM, Shedeed HA, Hussein AS, Tolba MF. Cloud Statistical Significance Estimation for Optimal Local Alignment of Huge DNA Sequences. Informatics and Systems (INFOS2012): Egypt, Cairo, 2012; 4855.
  • 2
    Smith TF, Waterman MS. Identification of common molecular subsequences. Journal of Molecular Biology 1981; 147(1):195197.
  • 3
    Pearson WR. Searching protein sequence libraries: comparison of the sensitivity and selectivity of the Smith–Waterman and FASTA algorithms. Genomics 1991; 11(3): 635650.
  • 4
    Doolittle RF. Similar amino acid sequences: chance or common ancestry? Science 1981; 214(4517):149159.
  • 5
    Karlin S, Altschul SF. Statistical significance in biological sequence analysis. Briefings in Bioinformatics 2006; 7(1):224.
  • 6
    Altschul S, Karlin SF. Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proceedings of the National Academy of Sciences 1990; 87(6):22642268.
  • 7
    Mott R Accurate formula for p-values of gapped local. Journal of Molecular Biology 2000; 300(3):649659.
  • 8
    Bellgard M, Nozaki Y. Statistical evaluation and comparison of a pairwise alignment. Bioinformatics 2004; 21(8):14211428.
  • 9
    Bacro JP, Comet J. Sequence alignment: an approximation law for the Z-value with applications to databank scanning. Computers and Chemistry 2001; 25(4):401410.
  • 10
    Bastien O, Aude JC, Roy S, Marechal E. Fundamentals of massive automatic pairwise alignments of protein sequences: theoretical significance of Z-value statistics. Bioinformatics 2004; 20(4):534537.
  • 11
    Aude JC, Louis A. An incremental algorithm for Z-value computations. Computers and Chemistry 2002; 26(5):402410.
  • 12
    Akoglu A, Striemer GM. Sequence alignment with GPU: Performance and design challenges. Proceedings of the 2009 IEEE International Symposium on Parallel&Distributed Processing 2009; 110.
  • 13
    Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2 [1 Septemper 2012].
  • 14
    Google App Engine. http://code.google.com/appengine [1 Septemper 2012].
  • 15
    Microsoft Azure. http://www.microsoft.com/windowsazure [1 Septemper 2012].
  • 16
    Chawla V, Sogani P. Cloud computing – the future. High Performance Architecture and Grid Computing (Communications in Computer and Information Science,vol.169) Springer: Berlin, 2011; 113118.
  • 17
    Stein LD. The case for cloud computing in genome informatics. Genome Biology 2010; 11(5): 1-7.
  • 18
    Abdelrahman TS, Manjikian N. Scheduling of wavefront parallelism on scalable shared-memory multiprocessors.International Conference on Parallel Processing, 1996; 122–131.
  • 19
    Wilbur WJ, Smith TF, Waterman MS, Lipman DJ. On the statistical significance of nucleic add similarities. Nucleic Acids Research 1984; 12(1): 215226.
  • 20
    Webb-Robertson BJ, McCue LA, Lawrence CE. Measuring global credibility with application to local sequence alignment. PLoS Computational Biology 2008; 4(5).
  • 21
    Zhang Y, Misra S, Honbo D, Agrawal A, Wei-keng L, Choudhary A. Efficient pairwise statistical significance estimation for local sequence alignment using GPU. IEEE 1st International Conference on Computational Advances in Bio and Medical Sciences 2011; 226–231.
  • 22
    Sandes EFO, Melo AC. CUDAlign: using GPU to accelerate the comparison of megabase genomic sequences. Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, January 2010. ACM SIGPLAN Notices: New York, NY, USA, 2010; 137146.
  • 23
    Agrawal A, Misra S, Honbo D, Choudhary A. Parallel pairwise statistical significance estimation of local sequence alignment using message passing interface library. Concurrency and Computation 2011; 23(17): 22692279.
  • 24
    Batista RB, Melo AC, Boukerche A. Exact pairwise alignment of megabase genome biological sequences using a novel z-align parallel strategy. IEEE International Symposium on Parallel & Distributed Processing 2009; 1–8.
  • 25
    Mitra R, Bandyopadhyay S. A parallel pairwise local sequence alignment algorithm. NanoBioscience, IEEE Transactions 2009; 8(2): 139146.
  • 26
    Roma NF, Almeida TJ. A parallel programming framework for multi-core DNA sequence alignment. International Conference on Complex, Intelligent and Software Intensive Systems 2010; 907–912.
  • 27
    Tsugawa M, Fortes AJ. CloudBLAST: combining MapReduce and Virtualization on distributed resources for bioinformatics applications. eScience, IEEE International Conference 2008; 222–229.
  • 28
    Jackson J, Barga R, Lu W. AzureBlast: a case study of developing science applications on the cloud. HPDC '10 Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing 2010; 413–420.
  • 29
    Schatz MC. CloudBurst: highly sensitive read mapping with MapReduce. Bioinformatics 2009; 25(11): 13631369.
  • 30
    Kudtarkar P, Fusaro VA, Pivovarov R, Patil P, Tonellato PJ, Wall DP. Cloud computing for comparative genomics. BMC Bioinformatics 2010; 11(7): 259.
  • 31
    Gotoh O An improved algorithm for matching biological sequences. Journal of Molecular Biology 1982; 162(3): 705708.
  • 32
    Gusfield D. Algorithms on strings, trees and sequences. Computer Science and Computational Biology (Computer algorithms; Molecular biology; Data processing). Cambridge University Press: New York, NY, USA, 1997; 505523.
  • 33
    G Pfister. In search of clusters: the coming battle in lowly parallel computing. Prentice-Hall, Inc. Upper Saddle River, NJ, 1995. http://dl.acm.org/citation.cfm?id=207418&CFID=190133757&CFTOKEN=75060752
  • 34
    Aude JC, Glemet E, Risler JL, Henaut A, Slonimski PP, Codani JJ, Comet JP. Significance of Z-value statistics of Smith–Waterman scores for protein alignments. Computers & Chemistry 1999; 23(3): 317331.
  • 35
    Comet JP, Aude JC, Glemet E, Wozniak A, Risler JL, Henaut A, Slonimski PP, Codani JJ. Automatic analysis of large scale pairwise alignment of protein sequences. Methods in microbiology 1999; 28: 229244.
  • 36
    Milojicic D, Gupta A. Evaluation of HPC applications on cloud. HP Laboratories, 2001.
  • 37
    Buyya R, Pandey S, Vecchiola C. High-performance cloud computing: a view of scientific applications. Proceedings of the 2009 10th International Symposium on Pervasive Systems, Algorithms, and Networks; 2009; 416
  • 38
    Rajiv R, Liang Z, Liang WU, Anna L, Andres Q, Manish P. Peer-to-peer cloud provisioning: service discovery and load-balancing. Cloud Computing (Computer Communications and Networks vol.0). Springer: London, 2010; 195217.