The Conformations of Amino Acids on a Gold(111) Surface



The interactions of amino acids with inorganic surfaces are of interest for biologists and biotechnologists alike. However, the structural determinants of peptide–surface interactions have remained elusive, but are important for a structural understanding of the interactions of biomolecules with gold surfaces. Molecular dynamics simulations are a tool to analyze structures of amino acids on surfaces. However, such an approach is challenging due to lacking parameterization for many surfaces and the polarizability of metal surfaces. Herein, we report DFT calculations of amino acid fragments in vacuo and molecular dynamics simulations of the interaction of all amino acids with a gold(111) surface in explicit solvent, using the recently introduced polarizable gold force field GolP. We describe preferred orientations of the amino acids on the metal surface. We find that all amino acids preferably interact with the gold surface at least partially with their backbone, underlining an unfolding propensity of gold surfaces.