Get access

Evidence of a Folding Intermediate in RNase H from Single-Molecule FRET Experiments

Authors

  • Robert Rieger,

    1. Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany), Fax: (+49) 721-608 84 80
    Search for more papers by this author
  • Dr. Andrei Kobitski,

    1. Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany), Fax: (+49) 721-608 84 80
    Search for more papers by this author
  • Dr. Hendrik Sielaff,

    1. Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany), Fax: (+49) 721-608 84 80
    Search for more papers by this author
  • Prof. Dr. G. Ulrich Nienhaus

    Corresponding author
    1. Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany), Fax: (+49) 721-608 84 80
    2. Department of Physics, University of Illinois at Urbana-Champaign, Urbana, 61801 (USA)
    • Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany), Fax: (+49) 721-608 84 80
    Search for more papers by this author

Abstract

Single-molecule Förster resonance energy transfer (FRET) experiments were performed on the enzyme RNase H specifically labeled with a FRET dye pair and diffusing freely in solutions containing between 0 and 6 M of the chemical denaturant GdmCl. We measured FRET efficiency histograms with high statistical accuracy to identify the well-known folding intermediate of RNase H, which escaped observation in our previous smFRET studies on immobilized preparations. Even with excellent data statistics, a folding intermediate is not obvious from the raw data. However, it can be uncovered by a global fitting procedure applied to the FRET histograms at all 22 GdmCl concentrations, in which a number of parameters were constrained. Most importantly, the fractional populations of the folded, unfolded and intermediate states were coupled by assuming the Boltzmann relation and a linear dependence of the free energies on the GdmCl concentration. The analysis not only resolves the apparent discrepancy with other data on RNase H, but yields free energy differences between the three populations in agreement with literature data. In addition, it removes the strong and unexplained broadening of the unfolded-state distribution in the transition region that was seen earlier in the two-state analysis.

Get access to the full text of this article

Ancillary