SEARCH

SEARCH BY CITATION

Keywords:

  • benchmarking;
  • computational chemistry;
  • density functional theory;
  • London-dispersion energy;
  • non-covalent interactions

Abstract

Dispersion-corrected density functional theory is assessed on the new S66 and S66x8 benchmark sets for non-covalent interactions. In total, 17 different density functionals are evaluated. Two flavors of our latest additive London-dispersion correction DFT-D3 and DFT-D3(BJ), which differ in their short-range damping functions, are tested. In general, dispersion corrections are again shown to be crucial to obtain reliable non-covalent interaction energies and equilibrium distances. The corrections strongly diminish the performance differences between the functionals, and in summary most dispersion-corrected methods can be recommended. DFT-D3 and DFT-D3(BJ) also yield similar results but for most functionals and intermolecular distances, the rational Becke–Johnson scheme performs slightly better. Particularly, the statistical analysis for S66x8, which covers also non-equilibrium complex geometries, shows that the Minnesota class of functionals is also improved by the D3 scheme. The best methods on the (meta-)GGA or hybrid- (meta-)GGA level are B97-D3, BLYP-D3(BJ), PW6B95-D3, MPW1B95-D3 and LC-ωPBE-D3. Double-hybrid functionals are the most accurate and robust methods, and in particular PWPB95-D3 and B2-PLYP-D3(BJ) can be recommended. The best DFT-D3 and DFT-D3(BJ) approaches are competitive to specially adapted perturbation methods and clearly outperform standard MP2. Comparisons between S66, S22 and parts of the GMTKN30 database show that the S66 set provides statistically well-behaved data and can serve as a valuable tool for, for example, fitting purposes or cross-validation of other benchmark databases.