Intermolecular Weak Interactions in HTeXH Dimers (X=O, S, Se, Te): Hydrogen Bonds, Chalcogen–Chalcogen Contacts and Chiral Discrimination

Authors


Abstract

A theoretical study of the HTeXH (X=O, S, Se and Te) monomers and homodimers was carried out by means of second-order Møller-Plesset perturbation theory (MP2) computational methods. In the case of monomers, the isomerization energy from HTeXH to H2Te=X and H2X=Te (X=O, S, Se, and Te) and the rotational transition-state barriers were obtained. Due to the chiral nature of these compounds, homo and heterochiral dimers were found. The electron density of the complexes was characterized with the atoms-in-molecules (AIM) methodology, finding a large variety of interactions. The charge transfer within the dimers was analyzed by means of natural bond orbitals (NBO). The density functional theory-symmetry adapted perturbation theory (DFT-SAPT) method was used to compute the components of the interaction energies. Hydrogen bonds and chalcogen–chalcogen interactions were characterized and their influence analyzed concerning the stability and chiral discrimination of the dimers.

Ancillary