The Nature of Chemical Bonds from PNOF5 Calculations

Authors

  • Dr. Jon M. Matxain,

    Corresponding author
    1. Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi (Spain)
    • Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi (Spain)
    Search for more papers by this author
  • Dr. Mario Piris ,

    1. Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi (Spain)
    2. IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Euskadi (Spain)
    Search for more papers by this author
  • Dr. Jon Uranga,

    1. Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi (Spain)
    Search for more papers by this author
  • Dr. Xabier Lopez,

    1. Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi (Spain)
    Search for more papers by this author
  • Prof. Dr. Gabriel Merino ,

    1. Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi (Spain)
    2. IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Euskadi (Spain)
    Search for more papers by this author
  • Prof. Dr. Jesus M. Ugalde

    1. Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi (Spain)
    Search for more papers by this author

Abstract

Natural orbital functional theory (NOFT) is used for the first time in the analysis of different types of chemical bonds. Concretely, the Piris natural orbital functional PNOF5 is used. It provides a localization scheme that yields an orbital picture which agrees very well with the empirical valence shell electron pair repulsion theory (VSEPR) and Bent’s rule, as well as with other theoretical pictures provided by valence bond (VB) or linear combination of atomic orbitals–molecular orbital (LCAO-MO) methods. In this context, PNOF5 provides a novel tool for chemical bond analysis. In this work, PNOF5 is applied to selected molecules that have ionic, polar covalent, covalent, multiple (σ and π), 3c–2e, and 3c–4e bonds.

Ancillary