Get access

Nitroanilines as Quenchers of Pyrene Fluorescence

Authors

  • Carlos E. Agudelo-Morales,

    1. Molecular Science Institute (ICMol), University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna,Valencia (Spain), Fax:(+34) 963543274
    Search for more papers by this author
  • Dr. Oscar F. Silva,

    1. Molecular Science Institute (ICMol), University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna,Valencia (Spain), Fax:(+34) 963543274
    Search for more papers by this author
  • Dr. Raquel E. Galian,

    Corresponding author
    1. Molecular Science Institute (ICMol), University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna,Valencia (Spain), Fax:(+34) 963543274
    2. Department of Analytical Chemistry, University of Valencia, C/Dr. Moliner 50, 46100 Burjassot, Valencia (Spain)
    • Molecular Science Institute (ICMol), University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna,Valencia (Spain), Fax:(+34) 963543274
    Search for more papers by this author
  • Prof. Julia Pérez-Prieto

    Corresponding author
    1. Molecular Science Institute (ICMol), University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna,Valencia (Spain), Fax:(+34) 963543274
    • Molecular Science Institute (ICMol), University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna,Valencia (Spain), Fax:(+34) 963543274
    Search for more papers by this author

Abstract

The quenching of pyrene and 1-methylpyrene fluorescence by nitroanilines (NAs), such as 2-, 3-, and 4-nitroaniline (2-NA, 3-NA, and 4-NA, respectively), 4-methyl-3-nitroaniline (4-M-3-NA), 2-methyl-4-nitroaniline (2-M-4-NA), and 4-methyl-3,5-dinitroaniline (4-M-3,5-DNA), are studied in toluene and 1,4-dioxane. Steady-state fluorescence data show the higher efficiency of the 4-NAs as quenchers and fit with a sphere-of-action model. This suggests a 4-NA tendency of being in close proximity to the fluorophore, which could be connected with their high polarity/hyperpolarizability. In addition, emission and excitation spectra evidence the formation of emissive pyrene—NA ground-state complexes in the case of the 4-NAs and, in a minor degree, in the 2-NA. Moreover, time-resolved fluorescence experiments show that increasing amounts of NA decrease the pyrene fluorescence lifetime to a degree that depends on the NA nature and is larger in the less viscous solvent (toluene). Although the NA absorption and the pyrene (Py) emission overlap, we found no evidence of dipole–dipole energy transfer from the pyrene singlet excited state (1Py) to the NAs; this could be due to the low NA concentration used in these experiments. Transient absorption spectra show that the formation of the pyrene triplet excited state (3Py) is barely affected by the presence of the NAs in spite of their efficiency in 1Py quenching, suggesting the involvement of 1Py—NA exciplexes which—after intersystem crossing—decay efficiently into 3Py.

Get access to the full text of this article

Ancillary