Get access
Advertisement

Interactions of Aromatic Radicals with Water

Authors

  • Dr. Rachel Crespo-Otero,

    1. Department of Theory, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany), Fax: (+49) (0)208/306-2980
    Search for more papers by this author
  • Kenny Bravo-Rodriguez,

    1. Department of Theory, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany), Fax: (+49) (0)208/306-2980
    Search for more papers by this author
  • Saonli Roy,

    1. Lehrstuhl für Organische Chemie II, Ruhr Universität Bochum, Universitätsstraße 150 44801 Bochum (Germany)
    Search for more papers by this author
  • Dr. Tobias Benighaus,

    1. Department of Theory, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany), Fax: (+49) (0)208/306-2980
    Search for more papers by this author
  • Prof. Dr. Walter Thiel,

    1. Department of Theory, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany), Fax: (+49) (0)208/306-2980
    Search for more papers by this author
  • Prof. Dr. Wolfram Sander,

    1. Lehrstuhl für Organische Chemie II, Ruhr Universität Bochum, Universitätsstraße 150 44801 Bochum (Germany)
    Search for more papers by this author
  • Dr. Elsa Sánchez-García

    Corresponding author
    1. Department of Theory, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany), Fax: (+49) (0)208/306-2980
    • Department of Theory, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany), Fax: (+49) (0)208/306-2980
    Search for more papers by this author

Abstract

The interactions of the benzyl radical (1), the anilinyl radical (2), and the phenoxyl radical (3) with water are investigated using density functional theory (DFT). In addition, we report dispersion-corrected DFT-D molecular dynamics simulations on these three systems and a matrix isolation study on 1–water. The radicals 13 form an interesting series with the number of lone pairs increasing from none to two. The anilinyl and benzyl radicals can act as Lewis base through their unpaired electrons, the lone pairs of the heteroatoms, or the doubly occupied π orbitals of the aromatic system. Matrix isolation experiments provide evidence for the formation of a π complex between 1 and water. By combining computational and experimental techniques we identify the possible interactions between the aromatic radicals 13 and water, predict the structure and vibrational spectra of the resulting complexes, and analyze the effects of substitution and temperature.

Get access to the full text of this article

Ancillary