SEARCH

SEARCH BY CITATION

Keywords:

  • core–shell catalysts;
  • electrocatalysis;
  • electrodeposition;
  • model catalyst;
  • platinum

Abstract

The synthesis of Cu(core)Pt(shell) model catalysts by the direct electrochemical deposition of Pt on Cu particles is presented. Cu particles with an average diameter of 200 nm have been deposited on glassy-carbon electrodes by double pulse electrodeposition from a copper sulfate solution. Subsequent deposition from a platinum nitrate solution under potential control allows for a high selectivity of the Pt deposition towards Cu. Using a combination of cyclic voltammetry, XPS and sputtering, the structure of the generated particles has been analyzed and their core–shell configuration proven. It is shown that the electrocatalytic activity for the oxygen reduction is similar to that of other PtCu catalyst systems. The synthesized structures could allow for the analysis of structure–activity relations of core–shell catalysts on the way to the simple and controlled synthesis of supported Cu(core)Pt(shell) nanoparticles as oxygen reduction catalysts.