Get access

Analyzing the Vibrational Signatures of Thiophenol Adsorbed on Small Gold Clusters by DFT Calculations

Authors

  • Conrard Giresse Tetsassi Feugmo,

    1. Laboratoire de Chimie Théorique (LCT), Unité de Chimie-Physique Théorique et Structurale (UCPTS), University of Namur, Rue de Bruxelles 61, B-5000 Namur (Belgium)
    Search for more papers by this author
  • Dr. Vincent Liégeois

    Corresponding author
    1. Laboratoire de Chimie Théorique (LCT), Unité de Chimie-Physique Théorique et Structurale (UCPTS), University of Namur, Rue de Bruxelles 61, B-5000 Namur (Belgium)
    • Laboratoire de Chimie Théorique (LCT), Unité de Chimie-Physique Théorique et Structurale (UCPTS), University of Namur, Rue de Bruxelles 61, B-5000 Namur (Belgium)
    Search for more papers by this author

Abstract

Using density functional theory, we calculate the IR and Raman signatures of the thiophenol (TP) molecule adsorbed on gold clusters by mimicking the different types of adsorption sites, and we analyze these signatures by using advanced tools implemented into the pyvib2 program. First, we follow the evolution of the vibrational normal modes from the isolated TP molecule to those of TP adsorbed on different clusters to highlight the influence of the site of adsorption on the vibrational motions. The use of the overlap matrix between the modes enables mode permutations, mode mixings, and mode splittings to be highlighted, all of which depend not only on the adsorption but also on the type of cluster and its symmetry. Second, the IR and Raman signatures were analyzed by using group coupling matrices and atomic contribution patterns based on the Hug decomposition scheme. Key results include 1) the fact that Raman spectroscopy is more sensitive than IR spectroscopy with respect to the nature of the coordination site, 2) an IR criterion that distinguishes between on-top coordination (onefold coordinated) with respect to the bridge (twofold coordinated) and hexagonal close-packed hollow site coordination (threefold coordinated), and 3) the best agreement to the experimental Raman spectrum with regard to signatures in the 500 to 1200 cm−1 region is obtained for bridged, twofold coordination.

Get access to the full text of this article

Ancillary