Biofuel Cells for Biomedical Applications: Colonizing the Animal Kingdom

Authors

  • Magnus Falk,

    1. Department of Biomedical Sciences, Malmö University, 205 06 Malmö (Sweden), Fax: (+46) 40-6658100
    Search for more papers by this author
    • M. Falk and C. W. Narváez Villarrubia equally contributed to the present work.

  • Claudia W. Narváez Villarrubia,

    1. Department of Chemical and Nuclear Engineering, University of New Mexico, NM 87131 Albuquerque (USA)
    Search for more papers by this author
    • M. Falk and C. W. Narváez Villarrubia equally contributed to the present work.

  • Dr. Sofia Babanova,

    1. Department of Chemical and Nuclear Engineering, University of New Mexico, NM 87131 Albuquerque (USA)
    Search for more papers by this author
  • Prof. Plamen Atanassov,

    1. Department of Chemical and Nuclear Engineering, University of New Mexico, NM 87131 Albuquerque (USA)
    Search for more papers by this author
  • Prof. Dr. Sergey Shleev

    Corresponding author
    1. Department of Biomedical Sciences, Malmö University, 205 06 Malmö (Sweden), Fax: (+46) 40-6658100
    • Department of Biomedical Sciences, Malmö University, 205 06 Malmö (Sweden), Fax: (+46) 40-6658100

    Search for more papers by this author

Abstract

Interdisciplinary research has combined the efforts of many scientists and engineers to gain an understanding of biotic and abiotic electrochemical processes, materials properties, biomedical, and engineering approaches for the development of alternative power-generating and/or energy-harvesting devices, aiming to solve health-related issues and to improve the quality of human life. This review intends to recapitulate the principles of biofuel cell development and the progress over the years, thanks to the contribution of cross-disciplinary researchers that have combined knowledge and innovative ideas to the field. The emergence of biofuel cells, as a response to the demand of electrical power devices that can operate under physiological conditions, are reviewed. Implantable biofuel cells operating inside living organisms have been envisioned for over fifty years, but few reports of implanted devices have existed up until very recently. The very first report of an implanted biofuel cell (implanted in a grape) was published only in 2003 by Adam Heller and his coworkers. This work was a result of earlier scientific efforts of this group to “wire” enzymes to the electrode surface. The last couple of years have, however, seen a multitude of biofuel cells being implanted and operating in different living organisms, including mammals. Herein, the evolution of the biofuel concept, the understanding and employment of catalyst and biocatalyst processes to mimic biological processes, are explored. These potentially green technology biodevices are designed to be applied for biomedical applications to power nano- and microelectronic devices, drug delivery systems, biosensors, and many more.

Ancillary