Magnetic Resonance Imaging of Electrochemical Cells Containing Bulk Metal



The development of improved energy-storage devices, as well as corrosion prevention and metal-electrofinishing technologies, requires knowledge of local composition and transport behaviour in electrolytes near bulk metals, in situ and in real time. It remains a challenge to acquire such data and new analytical methods are required. Recent work shows that magnetic resonance imaging (MRI) is able to map concentration gradients and visualise electrochemical processes in electrochemical cells containing bulk metals. This recent work, along with the challenges, and solutions, associated with MRI of these electrochemical cells are reviewed.