Get access

The Local Kinetic Energy Profile of an Inverted Carbon[BOND]Carbon Bond Reveals and Refines its Charge-Shift Character



Analysis of the kinetic energy density within a molecule identifies patterns in its electronic structure that are linked to the concept of charge-shift bonding. This is illustrated in a detailed study of twelve molecules, possessing carbon-carbon covalent as well as carbon-carbon charge-shift bonds in various degrees of orders, including propellanes and heteropropellanes. Regions of slow electrons are fundamental for such a correlation, and a RoSE (region of slow electrons) indicator ν±, based on the positive definite kinetic energy density τ, is employed to characterize classes of charge-shift bonds in terms of its full topology of all critical points of rank three.